ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.5 by benhoob, Mon Nov 8 11:09:49 2010 UTC vs.
Revision 1.11 by benhoob, Thu Nov 11 15:29:40 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 %\noindent {\color{red} In the 11 pb everything is very
5 %simple because there are a few zeros.  This text is written
6 %for the full dataset under the assumption that some of these
7 %numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
27 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors). (see Table~\ref{tab:datayield}).  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  The quoted uncertainty
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A$\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35 < We also show the SM Monte Carlo expectations.}
36 < \begin{tabular}{|l|c|c|c|c||c|}
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
39   \hline
40 <      &A   & B    & C   & D   & AC/B \\ \hline
41 < Data  &3   & 6    & 1   & 0   & $0.5^{+0.6}_{-0.5}$ \\
42 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
40 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
41 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
42 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
43 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
44 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
45 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
46 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
47 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
48 > \hline
49 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
50 > \hline
51 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
52   \hline
53   \end{tabular}
54   \end{center}
# Line 52 | Line 60 | SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
60   %estimate of the $t\bar{t}$ contribution.  The result
61   %of this exercise is {\color{red} xx} events.
62  
63 + \clearpage
64 +
65   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66   \label{sec:victoryres}
67  
68 + We first use the $P_T(\ell \ell)$ method to predict the number of events
69 + in a control region defined by $125<{\rm SumJetPt}<300$~GeV and
70 + \met/$\sqrt{\rm SumJetPt} > 8.5$. We find 6 events satisfying the
71 + corresponding selection with the \met/$\sqrt{\rm SumJetPt}$ cut replaced
72 + by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ cut. The predicted yield
73 + is then given by $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
74 + (statistical uncertainty only, assuming Gaussian errors),
75 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
76 + agreement with the observed yield of 11 events, as shown in
77 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
78 + {\color{ref} \bf Perform DY estimate for this control region}.
79 +
80 + Encouraged by the good agreement between predicted and observed yields
81 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
82 + in the signal region ${\rm SumJetPt}>300$~GeV.
83   The number of data events in region $D'$, which is defined in
84   Section~\ref{sec:othBG} to be the same as region $D$ but with the
85   $\met/\sqrt{\rm SumJetPt}$ requirement
86 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
87 < is $N_{D'}=1$.  Thus the BG prediction is
88 < $N_D = K \cdot N_{D'} = 1.5$
89 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory}.
90 < Note that if we were to subtract off from region $D'$
91 < the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
92 < Section~\ref{sec:othBG}, the background
93 < prediction would change to $N_D=0.9 \pm xx$ events.
94 <
95 < %%%TO BE REPLACED
96 < %{\color{red}As mentioned previously, for the 11/pb analysis
72 < %we use the $K$ factor from data and take $K=1$.
73 < %This will change for the full dataset.  We will also pay
74 < %more attention to the statistical errors.}
75 <
76 < %The number of data events in region $D'$, which is defined in
77 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
78 < %$\met/\sqrt{\rm SumJetPt}$ requirement
79 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
80 < %is $N_{D'}=1$.  Thus the BG prediction is
81 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
82 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
83 < %Note that if we were to subtract off from region $D'$
84 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
85 < %Section~\ref{sec:othBG}, the background
86 < %prediction would change to $N_D=0.9 \pm xx$ events.
87 < %{\color{red} When we do this with a real
88 < %$K_{\rm fudge}$, the fudge factor will be different
89 < %after the DY subtraction.}
90 <
91 < As a cross-check, we use the $P_T(\ell \ell)$
92 < method to also predict the number of events in the
93 < control region $120<{\rm SumJetPt}<300$ GeV and
94 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
95 < $5.6^{+x}_{-y}$ events and we observe 4.
96 < The results of the $P_T(\ell\ell)$ method are
97 < summarized in Figure~\ref{fig:victory}.
86 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
87 > is $N_{D'}=2$.  Thus the BG prediction is
88 > $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
89 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
90 > We next subtract off the expected DY contribution of
91 > {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 > in Sec.~\ref{sec:othBG}. This gives a predicted yield of
93 > $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
94 > 1 event.
95 >
96 >
97  
98   \begin{figure}[hbt]
99   \begin{center}
100 < \includegraphics[width=0.48\linewidth]{victory_control.png}
101 < \includegraphics[width=0.48\linewidth]{victory_sig.png}
100 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
101 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
102   \caption{\label{fig:victory}\protect Distributions of
103   tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
104   We show the oberved distributions in both Monte Carlo and data.
# Line 109 | Line 108 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
108   \end{figure}
109  
110  
111 + \begin{table}[hbt]
112 + \begin{center}
113 + \label{tab:victory_control}
114 + \caption{Results of the dilepton $p_{T}$ template method in the control region
115 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
116 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
117 + and MC. The error on the prediction for data is statistical only, assuming
118 + Gaussian errors.}
119 + \begin{tabular}{l|c|c|c}
120 + \hline
121 +              & Predicted           &   Observed &  Obs/Pred \\
122 + \hline
123 + total SM   MC &      7.10           &       8.61 &      1.21 \\
124 +         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
125 + \hline
126 + \end{tabular}
127 + \end{center}
128 + \end{table}
129 +
130 + \begin{table}[hbt]
131 + \begin{center}
132 + \label{tab:victory_control}
133 + \caption{Results of the dilepton $p_{T}$ template method in the signal region
134 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
135 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
136 + and MC. The error on the prediction for data is statistical only, assuming
137 + Gaussian errors.}
138 + \begin{tabular}{l|c|c|c}
139 + \hline
140 +              & Predicted                &   Observed &  Obs/Pred \\
141 + \hline
142 + total SM   MC &      0.96                &       1.41 &      1.46 \\
143 +         data &  $N_D=1.8^{+2.5}_{-1.8}$ &          1 &      0.33 \\
144 + \hline
145 + \end{tabular}
146 + \end{center}
147 + \end{table}
148 +
149 +
150   \subsection{Summary of results}
151   To summarize: we see no evidence for an anomalous
152   rate of opposite sign isolated dilepton events

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines