ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.6 by benhoob, Mon Nov 8 13:10:39 2010 UTC vs.
Revision 1.15 by benhoob, Sat Nov 13 07:48:09 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 %\noindent {\color{red} In the 11 pb everything is very
5 %simple because there are a few zeros.  This text is written
6 %for the full dataset under the assumption that some of these
7 %numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
27 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 > Gaussian errors), as shown in Table~\ref{tab:datayield}.  
28  
29   \begin{table}[hbt]
30   \begin{center}
31   \caption{\label{tab:datayield} Data yields in the four
32 < regions of Figure~\ref{fig:abcdData}.  The quoted uncertainty
32 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 > by A $\times$C / B.  The quoted uncertainty
34   on the prediction in data is statistical only, assuming Gaussian errors.
35 < We also show the SM Monte Carlo expectations.}
36 < \begin{tabular}{|l|c|c|c|c||c|}
35 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 > \begin{tabular}{l||c|c|c|c||c}
37 > \hline
38 >         sample                          &              A   &              B   &              C   &              D   & A $\times$ C / B  \\
39   \hline
40 <      &A   & B    & C   & D   & AC/B \\ \hline
41 < Data  &3   & 6    & 1   & 0   & $0.5^{+0.6}_{-0.5}$ \\
42 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
40 >
41 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
42 > $t\bar{t}\rightarrow \mathrm{other}$     &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
43 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
44 > $W^{\pm}$ + jets                         &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
45 >       $W^+W^-$                          &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
46 >   $W^{\pm}Z^0$                          &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
47 >       $Z^0Z^0$                          &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
48 >     single top                          &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
49 > \hline
50 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
51 > \hline
52 >           data                          &             11   &             36   &              5   &              1   &  $1.53\pm0.86$  \\
53   \hline
54   \end{tabular}
55   \end{center}
# Line 52 | Line 61 | SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
61   %estimate of the $t\bar{t}$ contribution.  The result
62   %of this exercise is {\color{red} xx} events.
63  
64 + \clearpage
65 +
66   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67   \label{sec:victoryres}
68  
69 + We first use the $P_T(\ell \ell)$ method to predict the number of events
70 + in control region A, defined in Sec.~\ref{sec:abcd} as
71 + $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
72 + We count the number of events in region
73 + $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74 + cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 + and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 + $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 + To predict the yield in region A we take
78 + $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79 + (statistical uncertainty only, assuming Gaussian errors),
80 + where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 + with the observed yield of 11 events, as shown in
82 + Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
83 +
84 + Encouraged by the good agreement between predicted and observed yields
85 + in the control region, we proceed to perform the $P_T(\ell \ell)$ method
86 + in the signal region ${\rm SumJetPt}>300$~GeV.
87   The number of data events in region $D'$, which is defined in
88   Section~\ref{sec:othBG} to be the same as region $D$ but with the
89   $\met/\sqrt{\rm SumJetPt}$ requirement
90 < replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
91 < is $N_{D'}=1$.  Thus the BG prediction is
92 < $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
93 < where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
94 < $K_C = 1$.
95 < Note that if we were to subtract off from region $D'$
96 < the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
97 < Section~\ref{sec:othBG}, the background
98 < prediction would change to $N_D=0.9 \pm xx$ events.
99 <
100 < %%%TO BE REPLACED
101 < %{\color{red}As mentioned previously, for the 11/pb analysis
73 < %we use the $K$ factor from data and take $K=1$.
74 < %This will change for the full dataset.  We will also pay
75 < %more attention to the statistical errors.}
76 <
77 < %The number of data events in region $D'$, which is defined in
78 < %Section~\ref{sec:othBG} to be the same as region $D$ but with the
79 < %$\met/\sqrt{\rm SumJetPt}$ requirement
80 < %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
81 < %is $N_{D'}=1$.  Thus the BG prediction is
82 < %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
83 < %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
84 < %Note that if we were to subtract off from region $D'$
85 < %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
86 < %Section~\ref{sec:othBG}, the background
87 < %prediction would change to $N_D=0.9 \pm xx$ events.
88 < %{\color{red} When we do this with a real
89 < %$K_{\rm fudge}$, the fudge factor will be different
90 < %after the DY subtraction.}
91 <
92 < As a cross-check, we use the $P_T(\ell \ell)$
93 < method to also predict the number of events in the
94 < control region $120<{\rm SumJetPt}<300$ GeV and
95 < \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
96 < $5.6^{+x}_{-y}$ events and we observe 4.
97 < The results of the $P_T(\ell\ell)$ method are
98 < summarized in Figure~\ref{fig:victory}.
90 > replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 > is $N_{D'}=2$.  
92 > We next subtract off the expected DY contribution of
93 > $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 > in Sec.~\ref{sec:othBG}. The BG prediction is
95 > $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 > uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 > as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 > This prediction is consistent with the observed yield of
99 > 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100 > (right).
101 >
102  
103   \begin{figure}[hbt]
104   \begin{center}
105 < \includegraphics[width=0.48\linewidth]{victory_control.png}
106 < \includegraphics[width=0.48\linewidth]{victory_sig.png}
105 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
106 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
107   \caption{\label{fig:victory}\protect Distributions of
108   tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
109   We show the oberved distributions in both Monte Carlo and data.
# Line 110 | Line 113 | ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in
113   \end{figure}
114  
115  
116 +
117 + \begin{table}[hbt]
118 + \begin{center}
119 + \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 + $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
121 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122 + and MC. The error on the prediction for data is statistical only, assuming
123 + Gaussian errors.}
124 + \begin{tabular}{lccc}
125 + \hline
126 +              & Predicted           &   Observed &  Obs/Pred \\
127 + \hline
128 + total SM   MC &      7.18           &       8.63 &      1.20 \\
129 +         data &    $6.06 \pm 5.95$  &         11 &      1.06 \\
130 + \hline
131 + \end{tabular}
132 + \end{center}
133 + \end{table}
134 +
135 + \begin{table}[hbt]
136 + \begin{center}
137 + \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 + $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
139 + the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140 + and MC. The error on the prediction for data is statistical only, assuming
141 + Gaussian errors.}
142 + \begin{tabular}{lccc}
143 + \hline
144 +              & Predicted                &   Observed &  Obs/Pred \\
145 + \hline
146 + total SM   MC &      1.03                &       1.43 &      1.38 \\
147 +         data &    $2.53 \pm 2.25$       &          1 &      0.40 \\
148 + \hline
149 + \end{tabular}
150 + \end{center}
151 + \end{table}
152 +
153 +
154   \subsection{Summary of results}
155   To summarize: we see no evidence for an anomalous
156   rate of opposite sign isolated dilepton events

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines