1 |
+ |
\clearpage |
2 |
+ |
|
3 |
|
\section{Results} |
4 |
|
\label{sec:results} |
5 |
|
|
4 |
– |
%\noindent {\color{red} In the 11 pb everything is very |
5 |
– |
%simple because there are a few zeros. This text is written |
6 |
– |
%for the full dataset under the assumption that some of these |
7 |
– |
%numbers will not be zero anymore.} |
8 |
– |
|
6 |
|
\begin{figure}[tbh] |
7 |
|
\begin{center} |
8 |
< |
\includegraphics[width=0.75\linewidth]{abcdData.png} |
8 |
> |
\includegraphics[width=0.75\linewidth]{abcd_35pb.png} |
9 |
|
\caption{\label{fig:abcdData}\protect Distributions of SumJetPt |
10 |
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also |
11 |
|
show our choice of ABCD regions.} |
12 |
|
\end{center} |
13 |
|
\end{figure} |
14 |
|
|
18 |
– |
|
15 |
|
The data, together with SM expectations is presented |
16 |
< |
in Figure~\ref{fig:abcdData}. We see $\color{red} 0$ |
17 |
< |
events in the signal region (region $D$). The Standard Model |
18 |
< |
MC expectation is {\color{red} 0.4} events. |
16 |
> |
in Figure~\ref{fig:abcdData}. We see 1 event in the |
17 |
> |
signal region (region $D$). The Standard Model MC |
18 |
> |
expectation is 1.4 events. |
19 |
|
|
20 |
|
\subsection{Background estimate from the ABCD method} |
21 |
|
\label{sec:abcdres} |
22 |
|
|
23 |
|
The data yields in the |
24 |
|
four regions are summarized in Table~\ref{tab:datayield}. |
25 |
< |
The prediction of the ABCD method is is given by $AC/B$ and |
26 |
< |
is 0.5 events. |
31 |
< |
(see Table~\ref{tab:datayield}. |
25 |
> |
The prediction of the ABCD method is is given by $A\times C/B$ and |
26 |
> |
is 1.5 events. (see Table~\ref{tab:datayield}. |
27 |
|
|
28 |
|
\begin{table}[hbt] |
29 |
|
\begin{center} |
30 |
|
\caption{\label{tab:datayield} Data yields in the four |
31 |
< |
regions of Figure~\ref{fig:abcdData}. The quoted uncertainty |
31 |
> |
regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given |
32 |
> |
by A$\times$C / B. The quoted uncertainty |
33 |
|
on the prediction in data is statistical only, assuming Gaussian errors. |
34 |
< |
We also show the SM Monte Carlo expectations.} |
35 |
< |
\begin{tabular}{|l|c|c|c|c||c|} |
34 |
> |
We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.} |
35 |
> |
\begin{tabular}{l||c|c|c|c||c} |
36 |
> |
\hline |
37 |
> |
sample & A & B & C & D & A$\times$C / B \\ |
38 |
> |
\hline |
39 |
> |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
40 |
> |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\ |
41 |
> |
$Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\ |
42 |
> |
$W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\ |
43 |
> |
$W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\ |
44 |
> |
$W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\ |
45 |
> |
$Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ |
46 |
> |
single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\ |
47 |
> |
\hline |
48 |
> |
total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\ |
49 |
|
\hline |
50 |
< |
&A & B & C & D & AC/B \\ \hline |
42 |
< |
Data &3 & 6 & 1 & 0 & $0.5^{+0.6}_{-0.5}$ \\ |
43 |
< |
SM MC &2.5 &11.2 & 1.5 & 0.4 & 0.4 \\ |
50 |
> |
data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\ |
51 |
|
\hline |
52 |
|
\end{tabular} |
53 |
|
\end{center} |