ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/results.tex (file contents):
Revision 1.2 by claudioc, Fri Nov 5 23:07:43 2010 UTC vs.
Revision 1.9 by benhoob, Thu Nov 11 09:20:56 2010 UTC

# Line 1 | Line 1
1 + \clearpage
2 +
3   \section{Results}
4   \label{sec:results}
5  
4 \noindent {\color{red} In the 11 pb everything is very
5 simple because there are a few zeros.  This text is written
6 for the full dataset under the assumption that some of these
7 numbers will not be zero anymore.}
8
6   \begin{figure}[tbh]
7   \begin{center}
8 < \includegraphics[width=0.75\linewidth]{abcdData.png}
8 > \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9   \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.  Here we also
11   show our choice of ABCD regions.}
12   \end{center}
13   \end{figure}
14  
18
15   The data, together with SM expectations is presented
16 < in Figure~\ref{fig:abcdData}.  We see $\color{red} 0$
17 < events in the signal region (region $D$).  The Standard Model
18 < MC expectation is {\color{red} 0.4} events.
16 > in Figure~\ref{fig:abcdData}.  We see 1 event in the
17 > signal region (region $D$).  The Standard Model MC
18 > expectation is 1.4 events.
19  
20   \subsection{Background estimate from the ABCD method}
21   \label{sec:abcdres}
22  
23   The data yields in the
24   four regions are summarized in Table~\ref{tab:datayield}.
25 < The prediction of the ABCD method is is given by $AC/B$ and
26 < is 0.5 events.
31 < (see Table~\ref{tab:datayield}.  
25 > The prediction of the ABCD method is is given by $A\times C/B$ and
26 > is 1.5 events. (see Table~\ref{tab:datayield}.  
27  
28   \begin{table}[hbt]
29   \begin{center}
30   \caption{\label{tab:datayield} Data yields in the four
31 < regions of Figure~\ref{fig:abcdData}.  We also show the
32 < SM Monte Carlo expectations.}
33 < \begin{tabular}{|l|c|c|c|c||c|}
34 < \hline
35 <      &A   & B    & C   & D   & AC/B \\ \hline
36 < Data  &3   & 6    & 1   & 0   & $0.5^{+x}_{-y}$ \\
37 < SM MC &2.5 &11.2  & 1.5 & 0.4 & 0.4 \\
31 > regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
32 > by A$\times$C / B.  The quoted uncertainty
33 > on the prediction in data is statistical only, assuming Gaussian errors.
34 > We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
35 > \begin{tabular}{l||c|c|c|c||c}
36 > \hline
37 >         sample   &              A   &              B   &              C   &              D   & A$\times$C / B  \\
38 > \hline
39 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
40 > $t\bar{t}\rightarrow \mathrm{other}$   &           0.15   &           0.85   &           0.09   &           0.04   &           0.02  \\
41 >   $Z^0$ + jets   &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
42 > $W^{\pm}$ + jets   &           0.00   &           0.10   &           0.00   &           0.00   &           0.00  \\
43 >       $W^+W^-$   &           0.19   &           0.29   &           0.02   &           0.07   &           0.02  \\
44 >   $W^{\pm}Z^0$   &           0.03   &           0.04   &           0.01   &           0.01   &           0.00  \\
45 >       $Z^0Z^0$   &           0.00   &           0.03   &           0.00   &           0.00   &           0.00  \\
46 >     single top   &           0.28   &           1.00   &           0.04   &           0.01   &           0.01  \\
47 > \hline
48 >    total SM MC   &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
49 > \hline
50 >           data   &             11   &             36   &              5   &              1   &1.53 $\pm$ 0.86  \\
51   \hline
52   \end{tabular}
53   \end{center}
54   \end{table}
55  
56 < As a cross-check, we can subtract from the yields in
57 < Table~\ref{tab:datayield} the expected DY contributions
58 < from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59 < estimate of the $t\bar{t}$ contribution.  The result
60 < of this exercise is {\color{red} xx} events.
56 > %As a cross-check, we can subtract from the yields in
57 > %Table~\ref{tab:datayield} the expected DY contributions
58 > %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59 > %estimate of the $t\bar{t}$ contribution.  The result
60 > %of this exercise is {\color{red} xx} events.
61  
62   \subsection{Background estimate from the $P_T(\ell\ell)$ method}
63   \label{sec:victoryres}
64  
57
58
65   The number of data events in region $D'$, which is defined in
66   Section~\ref{sec:othBG} to be the same as region $D$ but with the
67   $\met/\sqrt{\rm SumJetPt}$ requirement
68   replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
69 < is $N_{D'}=0$.  Thus the BG prediction is
70 < $N_D = K^{MC} \cdot K_{\rm fudge} \cdot N_{D'} = xx$
71 < where we used $K^{MC}=xx$ and $K_{\rm fudge}=xx \pm yy$.
69 > is $N_{D'}=2$.  Thus the BG prediction is
70 > $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
71 > where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
72 > $K_C = 1$.
73   Note that if we were to subtract off from region $D'$
74 < the {\color{red} $xx$} DY events estimated from
75 < Table~\ref{tab:ABCD-DYptll}, the background
76 < prediction would change to $N_D=xx$.
74 > the {\color{red} 0.8 $\pm$ 0.8} DY events estimated from
75 > Section~\ref{sec:othBG}, the background
76 > prediction would change to $N_D=1.8 \pm xx$ events.
77 >
78 > %%%TO BE REPLACED
79 > %{\color{red}As mentioned previously, for the 11/pb analysis
80 > %we use the $K$ factor from data and take $K=1$.
81 > %This will change for the full dataset.  We will also pay
82 > %more attention to the statistical errors.}
83 >
84 > %The number of data events in region $D'$, which is defined in
85 > %Section~\ref{sec:othBG} to be the same as region $D$ but with the
86 > %$\met/\sqrt{\rm SumJetPt}$ requirement
87 > %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
88 > %is $N_{D'}=1$.  Thus the BG prediction is
89 > %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
90 > %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
91 > %Note that if we were to subtract off from region $D'$
92 > %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
93 > %Section~\ref{sec:othBG}, the background
94 > %prediction would change to $N_D=0.9 \pm xx$ events.
95 > %{\color{red} When we do this with a real
96 > %$K_{\rm fudge}$, the fudge factor will be different
97 > %after the DY subtraction.}
98  
99   As a cross-check, we use the $P_T(\ell \ell)$
100   method to also predict the number of events in the
101 < control region $120<{\rm SumJetPt}<300$ GeV and
101 > control region $125<{\rm SumJetPt}<300$ GeV and
102   \met/$\sqrt{\rm SumJetPt} > 8.5$.  We predict
103   $5.6^{+x}_{-y}$ events and we observe 4.
104 < {\color{red} Note: when we do this more carefully
105 < we will need to use a different $K$ and a different $K_{fudge}$>}
104 > The results of the $P_T(\ell\ell)$ method are
105 > summarized in Figure~\ref{fig:victory}.
106 >
107 > \begin{figure}[hbt]
108 > \begin{center}
109 > \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
110 > \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
111 > \caption{\label{fig:victory}\protect Distributions of
112 > tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
113 > We show the oberved distributions in both Monte Carlo and data.
114 > We also show the distributions predicted from
115 > ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
116 > \end{center}
117 > \end{figure}
118 >
119 >
120 > \begin{table}[hbt]
121 > \begin{center}
122 > \label{tab:victory_control}
123 > \caption{Results of the dilepton $p_{T}$ template method in the control region
124 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
125 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
126 > and MC. The error on the prediction for data is statistical only, assuming
127 > Gaussian errors.}
128 > \begin{tabular}{l|c|c|c}
129 > \hline
130 >              & Predicted           &   Observed &  Obs/Pred \\
131 > \hline
132 > total SM   MC &      7.10           &       8.61 &      1.21 \\
133 >         data &    10.38 $\pm$ 4.24 &         11 &      1.06 \\
134 > \hline
135 > \end{tabular}
136 > \end{center}
137 > \end{table}
138 >
139 > \begin{table}[hbt]
140 > \begin{center}
141 > \label{tab:victory_control}
142 > \caption{Results of the dilepton $p_{T}$ template method in the signal region
143 > $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
144 > the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
145 > and MC. The error on the prediction for data is statistical only, assuming
146 > Gaussian errors.}
147 > \begin{tabular}{l|c|c|c}
148 > \hline
149 >              & Predicted           &   Observed &  Obs/Pred \\
150 > \hline
151 > total SM   MC &      0.96           &       1.41 &      1.46 \\
152 >         data &     3.07 $\pm$ 2.17 &          1 &      0.33 \\
153 > \hline
154 > \end{tabular}
155 > \end{center}
156 > \end{table}
157 >
158  
159 + \subsection{Summary of results}
160   To summarize: we see no evidence for an anomalous
161   rate of opposite sign isolated dilepton events
162   at high \met and high SumJetPt.  The extraction of
163   quantitative limits on new physics models is discussed
164 < in Section~\ref{sec:limits}.
164 > in Section~\ref{sec:limit}.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines