ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.11
Committed: Thu Nov 11 15:29:40 2010 UTC (14 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.10: +28 -40 lines
Log Message:
Updated discussion of victory method

File Contents

# Content
1 \clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11 show our choice of ABCD regions.}
12 \end{center}
13 \end{figure}
14
15 The data, together with SM expectations is presented
16 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 signal region (region $D$). The Standard Model MC
18 expectation is 1.4 events.
19
20 \subsection{Background estimate from the ABCD method}
21 \label{sec:abcdres}
22
23 The data yields in the
24 four regions are summarized in Table~\ref{tab:datayield}.
25 The prediction of the ABCD method is is given by $A\times C/B$ and
26 is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 Gaussian errors). (see Table~\ref{tab:datayield}).
28
29 \begin{table}[hbt]
30 \begin{center}
31 \caption{\label{tab:datayield} Data yields in the four
32 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 by A$\times$C / B. The quoted uncertainty
34 on the prediction in data is statistical only, assuming Gaussian errors.
35 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 \begin{tabular}{l||c|c|c|c||c}
37 \hline
38 sample & A & B & C & D & A$\times$C / B \\
39 \hline
40 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
41 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
42 $Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
43 $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
44 $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
45 $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
46 $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
47 single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
48 \hline
49 total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
50 \hline
51 data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
52 \hline
53 \end{tabular}
54 \end{center}
55 \end{table}
56
57 %As a cross-check, we can subtract from the yields in
58 %Table~\ref{tab:datayield} the expected DY contributions
59 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60 %estimate of the $t\bar{t}$ contribution. The result
61 %of this exercise is {\color{red} xx} events.
62
63 \clearpage
64
65 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66 \label{sec:victoryres}
67
68 We first use the $P_T(\ell \ell)$ method to predict the number of events
69 in a control region defined by $125<{\rm SumJetPt}<300$~GeV and
70 \met/$\sqrt{\rm SumJetPt} > 8.5$. We find 6 events satisfying the
71 corresponding selection with the \met/$\sqrt{\rm SumJetPt}$ cut replaced
72 by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ cut. The predicted yield
73 is then given by $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
74 (statistical uncertainty only, assuming Gaussian errors),
75 where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
76 agreement with the observed yield of 11 events, as shown in
77 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
78 {\color{ref} \bf Perform DY estimate for this control region}.
79
80 Encouraged by the good agreement between predicted and observed yields
81 in the control region, we proceed to perform the $P_T(\ell \ell)$ method
82 in the signal region ${\rm SumJetPt}>300$~GeV.
83 The number of data events in region $D'$, which is defined in
84 Section~\ref{sec:othBG} to be the same as region $D$ but with the
85 $\met/\sqrt{\rm SumJetPt}$ requirement
86 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
87 is $N_{D'}=2$. Thus the BG prediction is
88 $N_D = K \cdot K_C \cdot N_{D'} = 3.07 \pm 2.17$ where $K=1.54 \pm xx$
89 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
90 We next subtract off the expected DY contribution of
91 {\color{red} \bf 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 in Sec.~\ref{sec:othBG}. This gives a predicted yield of
93 $N_D=1.8^{+2.5}_{-1.8}$ events, which is consistent with the observed yield of
94 1 event.
95
96
97
98 \begin{figure}[hbt]
99 \begin{center}
100 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
101 \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
102 \caption{\label{fig:victory}\protect Distributions of
103 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
104 We show the oberved distributions in both Monte Carlo and data.
105 We also show the distributions predicted from
106 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
107 \end{center}
108 \end{figure}
109
110
111 \begin{table}[hbt]
112 \begin{center}
113 \label{tab:victory_control}
114 \caption{Results of the dilepton $p_{T}$ template method in the control region
115 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
116 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
117 and MC. The error on the prediction for data is statistical only, assuming
118 Gaussian errors.}
119 \begin{tabular}{l|c|c|c}
120 \hline
121 & Predicted & Observed & Obs/Pred \\
122 \hline
123 total SM MC & 7.10 & 8.61 & 1.21 \\
124 data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\
125 \hline
126 \end{tabular}
127 \end{center}
128 \end{table}
129
130 \begin{table}[hbt]
131 \begin{center}
132 \label{tab:victory_control}
133 \caption{Results of the dilepton $p_{T}$ template method in the signal region
134 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
135 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
136 and MC. The error on the prediction for data is statistical only, assuming
137 Gaussian errors.}
138 \begin{tabular}{l|c|c|c}
139 \hline
140 & Predicted & Observed & Obs/Pred \\
141 \hline
142 total SM MC & 0.96 & 1.41 & 1.46 \\
143 data & $N_D=1.8^{+2.5}_{-1.8}$ & 1 & 0.33 \\
144 \hline
145 \end{tabular}
146 \end{center}
147 \end{table}
148
149
150 \subsection{Summary of results}
151 To summarize: we see no evidence for an anomalous
152 rate of opposite sign isolated dilepton events
153 at high \met and high SumJetPt. The extraction of
154 quantitative limits on new physics models is discussed
155 in Section~\ref{sec:limit}.