ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.13
Committed: Thu Nov 11 16:59:39 2010 UTC (14 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.12: +13 -14 lines
Log Message:
Updates

File Contents

# Content
1 \clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11 show our choice of ABCD regions.}
12 \end{center}
13 \end{figure}
14
15 The data, together with SM expectations is presented
16 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 signal region (region $D$). The Standard Model MC
18 expectation is 1.4 events.
19
20 \subsection{Background estimate from the ABCD method}
21 \label{sec:abcdres}
22
23 The data yields in the
24 four regions are summarized in Table~\ref{tab:datayield}.
25 The prediction of the ABCD method is is given by $A\times C/B$ and
26 is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 Gaussian errors), as shown in Table~\ref{tab:datayield}.
28
29 \begin{table}[hbt]
30 \begin{center}
31 \caption{\label{tab:datayield} Data yields in the four
32 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 by A$\times$C / B. The quoted uncertainty
34 on the prediction in data is statistical only, assuming Gaussian errors.
35 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 \begin{tabular}{l||c|c|c|c||c}
37 \hline
38 sample & A & B & C & D & A$\times$C / B \\
39 \hline
40 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
41 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
42 $Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
43 $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
44 $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
45 $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
46 $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
47 single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
48 \hline
49 total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
50 \hline
51 data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
52 \hline
53 \end{tabular}
54 \end{center}
55 \end{table}
56
57 %As a cross-check, we can subtract from the yields in
58 %Table~\ref{tab:datayield} the expected DY contributions
59 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
60 %estimate of the $t\bar{t}$ contribution. The result
61 %of this exercise is {\color{red} xx} events.
62
63 \clearpage
64
65 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
66 \label{sec:victoryres}
67
68 We first use the $P_T(\ell \ell)$ method to predict the number of events
69 in control region A, defined in Sec.~\ref{sec:abcd} as
70 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
71 We count the number of events in region
72 $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
73 cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
74 and find $N_{A'}=6$. To predict the yield in region A we take
75 $N_A = K \cdot K_C \cdot N_{A'} = 10.4 \pm 4.2$
76 (statistical uncertainty only, assuming Gaussian errors),
77 where we have taken $K = 1.73$ and $K_C = 1$. This yield is in good
78 agreement with the observed yield of 11 events, as shown in
79 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
80 {\color{red} \bf Perform DY estimate for this control region}.
81
82 Encouraged by the good agreement between predicted and observed yields
83 in the control region, we proceed to perform the $P_T(\ell \ell)$ method
84 in the signal region ${\rm SumJetPt}>300$~GeV.
85 The number of data events in region $D'$, which is defined in
86 Section~\ref{sec:othBG} to be the same as region $D$ but with the
87 $\met/\sqrt{\rm SumJetPt}$ requirement
88 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
89 is $N_{D'}=2$.
90 We next subtract off the expected DY contribution of
91 {\color{red} \bf $N_{DY}$ = 0.8 $\pm$ 0.8 (update DY estimate)} events, as calculated
92 in Sec.~\ref{sec:othBG}. The BG prediction is
93 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 1.8^{+2.5}_{-1.8}$ (statistical
94 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
95 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
96 This prediction is consistent with the observed yield of
97 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
98 (right).
99
100
101 \begin{figure}[hbt]
102 \begin{center}
103 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
104 \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
105 \caption{\label{fig:victory}\protect Distributions of
106 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
107 We show the oberved distributions in both Monte Carlo and data.
108 We also show the distributions predicted from
109 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
110 \end{center}
111 \end{figure}
112
113
114 \begin{table}[hbt]
115 \begin{center}
116 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
117 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
118 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
119 and MC. The error on the prediction for data is statistical only, assuming
120 Gaussian errors.}
121 \begin{tabular}{lccc}
122 \hline
123 & Predicted & Observed & Obs/Pred \\
124 \hline
125 total SM MC & 7.10 & 8.61 & 1.21 \\
126 data & 10.38 $\pm$ 4.24 & 11 & 1.06 \\
127 \hline
128 \end{tabular}
129 \end{center}
130 \end{table}
131
132 \begin{table}[hbt]
133 \begin{center}
134 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
135 $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
136 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
137 and MC. The error on the prediction for data is statistical only, assuming
138 Gaussian errors.}
139 \begin{tabular}{lccc}
140 \hline
141 & Predicted & Observed & Obs/Pred \\
142 \hline
143 total SM MC & 0.96 & 1.41 & 1.46 \\
144 data & $1.8^{+2.5}_{-1.8}$ & 1 & 0.56 \\
145 \hline
146 \end{tabular}
147 \end{center}
148 \end{table}
149
150
151 \subsection{Summary of results}
152 To summarize: we see no evidence for an anomalous
153 rate of opposite sign isolated dilepton events
154 at high \met and high SumJetPt. The extraction of
155 quantitative limits on new physics models is discussed
156 in Section~\ref{sec:limit}.