ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.16
Committed: Sat Nov 13 07:50:18 2010 UTC (14 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.15: +1 -1 lines
Log Message:
Include DY estimate for A'

File Contents

# Content
1 \clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11 show our choice of ABCD regions.}
12 \end{center}
13 \end{figure}
14
15 The data, together with SM expectations is presented
16 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 signal region (region $D$). The Standard Model MC
18 expectation is 1.4 events.
19
20 \subsection{Background estimate from the ABCD method}
21 \label{sec:abcdres}
22
23 The data yields in the
24 four regions are summarized in Table~\ref{tab:datayield}.
25 The prediction of the ABCD method is is given by $A\times C/B$ and
26 is 1.5 $\pm$ 0.9 events (statistical uncertainty only, assuming
27 Gaussian errors), as shown in Table~\ref{tab:datayield}.
28
29 \begin{table}[hbt]
30 \begin{center}
31 \caption{\label{tab:datayield} Data yields in the four
32 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
33 by A $\times$C / B. The quoted uncertainty
34 on the prediction in data is statistical only, assuming Gaussian errors.
35 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
36 \begin{tabular}{l||c|c|c|c||c}
37 \hline
38 sample & A & B & C & D & A $\times$ C / B \\
39 \hline
40
41 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
42 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
43 $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\
44 $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
45 $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
46 $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
47 $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
48 single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
49 \hline
50 total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\
51 \hline
52 data & 11 & 36 & 5 & 1 & $1.53\pm0.86$ \\
53 \hline
54 \end{tabular}
55 \end{center}
56 \end{table}
57
58 %As a cross-check, we can subtract from the yields in
59 %Table~\ref{tab:datayield} the expected DY contributions
60 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
61 %estimate of the $t\bar{t}$ contribution. The result
62 %of this exercise is {\color{red} xx} events.
63
64 \clearpage
65
66 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
67 \label{sec:victoryres}
68
69 We first use the $P_T(\ell \ell)$ method to predict the number of events
70 in control region A, defined in Sec.~\ref{sec:abcd} as
71 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5.
72 We count the number of events in region
73 $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
74 cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
75 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
76 $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
77 To predict the yield in region A we take
78 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
79 (statistical uncertainty only, assuming Gaussian errors),
80 where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
81 with the observed yield of 11 events, as shown in
82 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
83
84 Encouraged by the good agreement between predicted and observed yields
85 in the control region, we proceed to perform the $P_T(\ell \ell)$ method
86 in the signal region ${\rm SumJetPt}>300$~GeV.
87 The number of data events in region $D'$, which is defined in
88 Section~\ref{sec:othBG} to be the same as region $D$ but with the
89 $\met/\sqrt{\rm SumJetPt}$ requirement
90 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
91 is $N_{D'}=2$.
92 We next subtract off the expected DY contribution of
93 $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
94 in Sec.~\ref{sec:othBG}. The BG prediction is
95 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
96 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
97 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
98 This prediction is consistent with the observed yield of
99 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
100 (right).
101
102
103 \begin{figure}[hbt]
104 \begin{center}
105 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
106 \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
107 \caption{\label{fig:victory}\protect Distributions of
108 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
109 We show the oberved distributions in both Monte Carlo and data.
110 We also show the distributions predicted from
111 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
112 \end{center}
113 \end{figure}
114
115
116
117 \begin{table}[hbt]
118 \begin{center}
119 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
120 $125 < \mathrm{sumJetPt} < 300$~GeV. The predicted and observed yields for
121 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
122 and MC. The error on the prediction for data is statistical only, assuming
123 Gaussian errors.}
124 \begin{tabular}{lccc}
125 \hline
126 & Predicted & Observed & Obs/Pred \\
127 \hline
128 total SM MC & 7.18 & 8.63 & 1.20 \\
129 data & $6.06 \pm 5.95$ & 11 & 1.82 \\
130 \hline
131 \end{tabular}
132 \end{center}
133 \end{table}
134
135 \begin{table}[hbt]
136 \begin{center}
137 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
138 $\mathrm{sumJetPt} > 300$~GeV. The predicted and observed yields for
139 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
140 and MC. The error on the prediction for data is statistical only, assuming
141 Gaussian errors.}
142 \begin{tabular}{lccc}
143 \hline
144 & Predicted & Observed & Obs/Pred \\
145 \hline
146 total SM MC & 1.03 & 1.43 & 1.38 \\
147 data & $2.53 \pm 2.25$ & 1 & 0.40 \\
148 \hline
149 \end{tabular}
150 \end{center}
151 \end{table}
152
153
154 \subsection{Summary of results}
155 To summarize: we see no evidence for an anomalous
156 rate of opposite sign isolated dilepton events
157 at high \met and high SumJetPt. The extraction of
158 quantitative limits on new physics models is discussed
159 in Section~\ref{sec:limit}.