ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.7
Committed: Wed Nov 10 17:27:20 2010 UTC (14 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.6: +26 -19 lines
Log Message:
Update for 35/pb

File Contents

# Content
1 \clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11 show our choice of ABCD regions.}
12 \end{center}
13 \end{figure}
14
15 The data, together with SM expectations is presented
16 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 signal region (region $D$). The Standard Model MC
18 expectation is 1.4 events.
19
20 \subsection{Background estimate from the ABCD method}
21 \label{sec:abcdres}
22
23 The data yields in the
24 four regions are summarized in Table~\ref{tab:datayield}.
25 The prediction of the ABCD method is is given by $A\times C/B$ and
26 is 1.5 events. (see Table~\ref{tab:datayield}.
27
28 \begin{table}[hbt]
29 \begin{center}
30 \caption{\label{tab:datayield} Data yields in the four
31 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
32 by A$\times$C / B. The quoted uncertainty
33 on the prediction in data is statistical only, assuming Gaussian errors.
34 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
35 \begin{tabular}{l||c|c|c|c||c}
36 \hline
37 sample & A & B & C & D & A$\times$C / B \\
38 \hline
39 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
40 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
41 $Z^0$ + jets & 0.00 & 1.16 & 0.08 & 0.08 & 0.00 \\
42 $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
43 $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
44 $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
45 $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
46 single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
47 \hline
48 total SM MC & 8.61 & 36.54 & 5.05 & 1.41 & 1.19 \\
49 \hline
50 data & 11 & 36 & 5 & 1 &1.53 $\pm$ 0.86 \\
51 \hline
52 \end{tabular}
53 \end{center}
54 \end{table}
55
56 %As a cross-check, we can subtract from the yields in
57 %Table~\ref{tab:datayield} the expected DY contributions
58 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
59 %estimate of the $t\bar{t}$ contribution. The result
60 %of this exercise is {\color{red} xx} events.
61
62 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
63 \label{sec:victoryres}
64
65 The number of data events in region $D'$, which is defined in
66 Section~\ref{sec:othBG} to be the same as region $D$ but with the
67 $\met/\sqrt{\rm SumJetPt}$ requirement
68 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
69 is $N_{D'}=1$. Thus the BG prediction is
70 $N_D = K \cdot K_C \cdot N_{D'} = 1.5$
71 where $K=1.5 \pm xx$ as derived in Sec.~\ref{sec:victory} and
72 $K_C = 1$.
73 Note that if we were to subtract off from region $D'$
74 the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
75 Section~\ref{sec:othBG}, the background
76 prediction would change to $N_D=0.9 \pm xx$ events.
77
78 %%%TO BE REPLACED
79 %{\color{red}As mentioned previously, for the 11/pb analysis
80 %we use the $K$ factor from data and take $K=1$.
81 %This will change for the full dataset. We will also pay
82 %more attention to the statistical errors.}
83
84 %The number of data events in region $D'$, which is defined in
85 %Section~\ref{sec:othBG} to be the same as region $D$ but with the
86 %$\met/\sqrt{\rm SumJetPt}$ requirement
87 %replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement
88 %is $N_{D'}=1$. Thus the BG prediction is
89 %$N_D = K \cdot K_{\rm fudge} \cdot N_{D'} = 1.5$
90 %where we used $K=1.5 \pm xx$ and $K_{\rm fudge}=1.0 \pm 0.0$.
91 %Note that if we were to subtract off from region $D'$
92 %the {\color{red} 0.4 $\pm$ 0.4} DY events estimated from
93 %Section~\ref{sec:othBG}, the background
94 %prediction would change to $N_D=0.9 \pm xx$ events.
95 %{\color{red} When we do this with a real
96 %$K_{\rm fudge}$, the fudge factor will be different
97 %after the DY subtraction.}
98
99 As a cross-check, we use the $P_T(\ell \ell)$
100 method to also predict the number of events in the
101 control region $120<{\rm SumJetPt}<300$ GeV and
102 \met/$\sqrt{\rm SumJetPt} > 8.5$. We predict
103 $5.6^{+x}_{-y}$ events and we observe 4.
104 The results of the $P_T(\ell\ell)$ method are
105 summarized in Figure~\ref{fig:victory}.
106
107 \begin{figure}[hbt]
108 \begin{center}
109 \includegraphics[width=0.48\linewidth]{victory_control.png}
110 \includegraphics[width=0.48\linewidth]{victory_sig.png}
111 \caption{\label{fig:victory}\protect Distributions of
112 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
113 We show the oberved distributions in both Monte Carlo and data.
114 We also show the distributions predicted from
115 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
116 \end{center}
117 \end{figure}
118
119
120 \subsection{Summary of results}
121 To summarize: we see no evidence for an anomalous
122 rate of opposite sign isolated dilepton events
123 at high \met and high SumJetPt. The extraction of
124 quantitative limits on new physics models is discussed
125 in Section~\ref{sec:limit}.