ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.23
Committed: Fri Nov 19 17:08:29 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: v2
Changes since 1.22: +4 -3 lines
Log Message:
Update ABCD prediction using k_{ABCD} factor

File Contents

# Content
1 %\clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_35pb.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data. Here we also
11 show our choice of ABCD regions.}
12 \end{center}
13 \end{figure}
14
15 The data, together with SM expectations is presented
16 in Figure~\ref{fig:abcdData}. We see 1 event in the
17 signal region (region $D$). For more information about
18 this one candidate events, see Appendix~\ref{sec:cand}.
19 The Standard Model MC expectation is 1.4 events.
20
21 \subsection{Background estimate from the ABCD method}
22 \label{sec:abcdres}
23
24 The data yields in the
25 four regions are summarized in Table~\ref{tab:datayield}.
26 The prediction of the ABCD method is is given by $k_{ABCD} \times (A\times C/B)$ and
27 is $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events, where $k_{ABCD} = 1.2 \pm 0.2$ as discussed
28 in Sec.~\ref{sec:abcd}.
29
30 \begin{table}[hbt]
31 \begin{center}
32 \caption{\label{tab:datayield} Data yields in the four
33 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
34 by A $\times$C / B. The quoted uncertainty
35 on the prediction in data is statistical only, assuming Gaussian errors.
36 We also show the SM Monte Carlo expectations, scaled to 34.85~pb$^{-1}$.}
37 \begin{tabular}{l||c|c|c|c||c}
38 \hline
39 sample & A & B & C & D & A $\times$ C / B \\
40 \hline
41
42 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\
43 $t\bar{t}\rightarrow \mathrm{other}$ & 0.15 & 0.85 & 0.09 & 0.04 & 0.02 \\
44 $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\
45 $W^{\pm}$ + jets & 0.00 & 0.10 & 0.00 & 0.00 & 0.00 \\
46 $W^+W^-$ & 0.19 & 0.29 & 0.02 & 0.07 & 0.02 \\
47 $W^{\pm}Z^0$ & 0.03 & 0.04 & 0.01 & 0.01 & 0.00 \\
48 $Z^0Z^0$ & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\
49 single top & 0.28 & 1.00 & 0.04 & 0.01 & 0.01 \\
50 \hline
51 total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\
52 \hline
53 data & 11 & 36 & 5 & 1 & $1.53 \pm 0.86$ \\
54 \hline
55 \end{tabular}
56 \end{center}
57 \end{table}
58
59 %As a cross-check, we can subtract from the yields in
60 %Table~\ref{tab:datayield} the expected DY contributions
61 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
62 %estimate of the $t\bar{t}$ contribution. The result
63 %of this exercise is {\color{red} xx} events.
64
65 %\clearpage
66
67 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68 \label{sec:victoryres}
69
70 We first use the $P_T(\ell \ell)$ method to predict the number of events
71 in control region A, defined in Sec.~\ref{sec:abcd} as
72 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
73 We count the number of events in region
74 $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75 cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 and find $N_{A'}=6$. We subtract off the expected DY contribution in this region
77 $N_{DY} = 2.5 \pm 2.4$, derived in Sec.~\ref{sec:othBG}.
78 To predict the yield in region A we take
79 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 6.1 \pm 6.0$
80 (statistical uncertainty only, assuming Gaussian errors),
81 where we have taken $K = 1.73$ and $K_C = 1$. This yield is consistent
82 with the observed yield of 11 events, as shown in
83 Table~\ref{tab:victory_control} and displayed in Fig.~\ref{fig:victory} (left).
84
85 Encouraged by the good agreement between predicted and observed yields
86 in the control region, we proceed to perform the $P_T(\ell \ell)$ method
87 in the signal region ${\rm SumJetPt}>300$~GeV.
88 The number of data events in region $D'$, which is defined in
89 Section~\ref{sec:othBG} to be the same as region $D$ but with the
90 $\met/\sqrt{\rm SumJetPt}$ requirement
91 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
92 is $N_{D'}=2$.
93 We next subtract off the expected DY contribution of
94 $N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
95 in Sec.~\ref{sec:othBG}. The BG prediction is
96 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.5 \pm 2.2$ (statistical
97 uncertainty only, assuming Gaussian errors), where $K=1.54 \pm xx$
98 as derived in Sec.~\ref{sec:victory} and $K_C = 1$.
99 This prediction is consistent with the observed yield of
100 1 event, as summarized in Table~\ref{tab:victory_signal} and Fig.~\ref{fig:victory}
101 (right).
102
103
104 \begin{figure}[hbt]
105 \begin{center}
106 \includegraphics[width=0.48\linewidth]{victory_control_35pb.png}
107 \includegraphics[width=0.48\linewidth]{victory_signal_35pb.png}
108 \caption{\label{fig:victory}\protect Distributions of
109 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
110 We show the oberved distributions in both Monte Carlo and data.
111 We also show the distributions predicted from
112 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
113 \end{center}
114 \end{figure}
115
116
117
118 \begin{table}[hbt]
119 \begin{center}
120 \caption{\label{tab:victory_control}Results of the dilepton $p_{T}$ template method in the control region
121 $125 < \mathrm{sumJetPt} < 300$~GeV$^{1/2}$. The predicted and observed yields for
122 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
123 and MC. The error on the prediction for data is statistical only, assuming
124 Gaussian errors.}
125 \begin{tabular}{lccc}
126 \hline
127 & Predicted & Observed & Obs/Pred \\
128 \hline
129 total SM MC & 7.18 & 8.63 & 1.20 \\
130 data & $6.06 \pm 5.95$ & 11 & 1.82 \\
131 \hline
132 \end{tabular}
133 \end{center}
134 \end{table}
135
136 \begin{table}[hbt]
137 \begin{center}
138 \caption{\label{tab:victory_signal}Results of the dilepton $p_{T}$ template method in the signal region
139 $\mathrm{sumJetPt} > 300$~GeV$^{1/2}$. The predicted and observed yields for
140 the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}}>$~8.5 are shown for data
141 and MC. The error on the prediction for data is statistical only, assuming
142 Gaussian errors.}
143 \begin{tabular}{lccc}
144 \hline
145 & Predicted & Observed & Obs/Pred \\
146 \hline
147 total SM MC & 1.03 & 1.43 & 1.38 \\
148 data & $2.53 \pm 2.25$ & 1 & 0.40 \\
149 \hline
150 \end{tabular}
151 \end{center}
152 \end{table}
153
154
155 % \clearpage
156 \subsection{Summary of results}
157
158 In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
159 We observe 1 event. \\
160 We expect 1.4 events from Standard Model MC prediction. \\
161 The ABCD data driven method predicts $1.8 \pm 1.0(stat) \pm 0.4(syst)$ events. \\
162 The $P_T(\ell\ell)$ method predicts $2.5 \pm 2.2$ events.
163
164 All three background estimates are consistent within their uncertainties.
165 We thus take as our best estimate of the Standard Model yield in
166 the signal region the MC prediction and assign as an uncertainty the
167 maximal deviation with either of the data-driven methods, $N_{BG}=1.4 \pm 1.1$.
168
169 We conclude that we see no evidence for an anomalous
170 rate of opposite sign isolated dilepton events
171 at high \met and high SumJetPt. The extraction of
172 quantitative limits on new physics models is discussed
173 in Section~\ref{sec:limit}.