ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/results.tex
Revision: 1.35
Committed: Tue Jan 18 22:09:11 2011 UTC (14 years, 3 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: FR1, HEAD
Changes since 1.34: +3 -0 lines
Log Message:
Added LM0 and LM1 ABCD yields

File Contents

# Content
1 %\clearpage
2
3 \section{Results}
4 \label{sec:results}
5
6 \begin{figure}[tbh]
7 \begin{center}
8 \includegraphics[width=0.75\linewidth]{abcd_jsonv3.png}
9 \caption{\label{fig:abcdData}\protect Distributions of SumJetPt
10 vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo and data.}
11 \end{center}
12 \end{figure}
13
14 The data, together with SM expectations is presented
15 in Figure~\ref{fig:abcdData}. We see 1 event in the
16 signal region (region $D$). For more information about
17 this one candidate events, see Appendix~\ref{sec:cand}.
18 The Standard Model MC expectation is 1.3 events.
19
20 \subsection{Background estimate from the ABCD method}
21 \label{sec:abcdres}
22
23 The data yields in the
24 four regions are summarized in Table~\ref{tab:datayield}.
25 The prediction of the ABCD method is is given by $A \times C / B = 1.3 \pm 0.8({\rm stat}) \pm 0.3({\rm syst})$.
26
27 \begin{table}[hbt]
28 \begin{center}
29 \caption{\label{tab:datayield} Data yields in the four
30 regions of Figure~\ref{fig:abcdData}, as well as the predicted yield in region D given
31 by A $\times$ C / B. The quoted uncertainty
32 on the prediction in data is statistical only, assuming Gaussian errors.
33 We also show the SM Monte Carlo expectations, scaled to 34.0~pb$^{-1}$.}
34 \begin{tabular}{l||c|c|c|c||c}
35 %%%official json v3 33.96/pb, 38X MC (D6T for ttbar and DY)
36 \hline
37 sample & A & B & C & D & PRED \\
38 \hline
39 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.44 $\pm$ 0.18 & 32.83 $\pm$ 0.35 & 4.78 $\pm$ 0.14 & 1.07 $\pm$ 0.06 & 1.23 $\pm$ 0.05 \\
40 $t\bar{t}\rightarrow \mathrm{other}$ & 0.12 $\pm$ 0.02 & 0.78 $\pm$ 0.05 & 0.16 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
41 $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.17 $\pm$ 0.08 & 1.18 $\pm$ 0.22 & 0.04 $\pm$ 0.04 & 0.12 $\pm$ 0.07 & 0.01 $\pm$ 0.01 \\
42 $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.09 $\pm$ 0.09 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
43 $W^+W^-$ & 0.11 $\pm$ 0.01 & 0.29 $\pm$ 0.02 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 & 0.01 $\pm$ 0.00 \\
44 $W^{\pm}Z^0$ & 0.01 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
45 $Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
46 single top & 0.29 $\pm$ 0.01 & 1.04 $\pm$ 0.03 & 0.04 $\pm$ 0.01 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
47 \hline
48 total SM MC & 9.14 $\pm$ 0.20 & 36.26 $\pm$ 0.43 & 5.05 $\pm$ 0.14 & 1.27 $\pm$ 0.10 & 1.27 $\pm$ 0.05 \\
49 \hline
50 data & 12 & 37 & 4 & 1 & 1.30 $\pm$ 0.78 \\
51 \hline
52 LM0 & 4.04 $\pm$ 0.19 & 4.45 $\pm$ 0.20 & 13.92 $\pm$ 0.36 & 8.63 $\pm$ 0.27 & 12.63 $\pm$ 0.88 \\
53 LM1 & 0.52 $\pm$ 0.02 & 0.26 $\pm$ 0.02 & 1.64 $\pm$ 0.04 & 3.56 $\pm$ 0.06 & 3.33 $\pm$ 0.27 \\
54 \hline
55 \end{tabular}
56 \end{center}
57 \end{table}
58
59 %As a cross-check, we can subtract from the yields in
60 %Table~\ref{tab:datayield} the expected DY contributions
61 %from Table~\ref{tab:ABCD-DY} in order to get a ``purer''
62 %estimate of the $t\bar{t}$ contribution. The result
63 %of this exercise is {\color{red} xx} events.
64
65 %\clearpage
66
67 \subsection{Background estimate from the $P_T(\ell\ell)$ method}
68 \label{sec:victoryres}
69
70 We first use the $P_T(\ell \ell)$ method to predict the number of events
71 in control region A, defined in Sec.~\ref{sec:abcd} as
72 $125<{\rm SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt}>$8.5~GeV$^{1/2}$.
73 We count the number of events in region
74 $A'$, defined in Sec.~\ref{sec:othBG} by replacing the above $\met/\sqrt{\rm SumJetPt}$
75 cut with the same cut on the quantity $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$,
76 and find $N_{A'}=5$. We subtract off the expected DY contribution in this region
77 $N_{DY} = 1.3 \pm 0.9$, derived in Sec.~\ref{sec:othBG}.
78 To predict the yield in region A we take
79 $N_A = K \cdot K_C \cdot ( N_{A'} - N_{DY} ) = 9.0 \pm 6.0$
80 where we have taken $K = 1.7$ and $K_C = 1.4$.
81 This uncertainty takes into account the statistical uncertainties in $N_{A'}$ and $N_{DY}$,
82 assuming Gaussian errors. This yield is consistent
83 with the observed yield of 12 events, as shown in
84 Table~\ref{tab:victory} and displayed in Fig.~\ref{fig:victory} (left).
85
86 Encouraged by the good agreement between predicted and observed yields
87 in the control region, we proceed to perform the $P_T(\ell \ell)$ method
88 in the signal region ${\rm SumJetPt}>300$~GeV.
89 The number of data events in region $D'$, which is defined in
90 Section~\ref{sec:othBG} to be the same as region $D$ but with the
91 $\met/\sqrt{\rm SumJetPt}$ requirement
92 replaced by a $P_T(\ell\ell)/\sqrt{\rm SumJetPt}$ requirement,
93 is $N_{D'}=1$.
94 %We next subtract off the expected DY contribution of
95 %$N_{DY}$ = $0.4 \pm 0.4$ events, as calculated
96 %in Sec.~\ref{sec:othBG}.
97 The BG prediction is
98 $N_D = K \cdot K_C \cdot (N_{D'}-N_{DY}) = 2.1 \pm 2.1({\rm stat}) \pm 0.6({\rm syst})$
99 where $K=1.5$ as derived in Sec.~\ref{sec:victory} and $K_C = 1.4 \pm 0.4$.
100 This prediction is consistent with the observed yield of 1 event, as summarized
101 in Table~\ref{tab:victory} and Fig.~\ref{fig:victory} (right).
102
103
104 \begin{figure}[hbt]
105 \begin{center}
106 \includegraphics[width=0.48\linewidth]{victory_control_jsonv3.png}
107 \includegraphics[width=0.48\linewidth]{victory_signal_jsonv3.png}
108 \caption{\label{fig:victory}\protect Distributions of
109 tcMet/$\sqrt{\rm SumJetPt}$ for the control and signal region.
110 We show the oberved distributions in both Monte Carlo and data.
111 We also show the distributions predicted from
112 ${P_T(\ell\ell)}/\sqrt{\rm SumJetPt}$ in both MC and data.}
113 \end{center}
114 \end{figure}
115
116
117 \begin{table}[hbt]
118 \begin{center}
119 \caption{\label{tab:victory}Results of the dilepton $p_{T}$ template method in the control region
120 ($125 < \mathrm{SumJetPt} < 300$~GeV) and signal region ($\mathrm{SumJetPt} > 300$~GeV). The predicted and
121 observed yields for the region $\mathrm{tcmet}/\sqrt{\mathrm{sumJetPt}} > 8.5$~GeV$^{1/2}$. The errors are
122 statistical only, assuming Gaussian errors. Note that the correction factor $K_C$ has been applied to
123 the data but not to the MC. }
124 \begin{tabular}{l|cc|cc}
125 \hline
126 & Control Region & & Signal Region & \\
127 \hline
128 & Predicted & Observed & Predicted & Observed \\
129 \hline
130 total SM MC & 6.45 & 9.14 & 0.92 & 1.27 \\
131 data & $9.0 \pm 6.0$ & 12 & $2.1 \pm 2.1$ & 1 \\
132 \hline
133 \end{tabular}
134 \end{center}
135 \end{table}
136
137
138
139 % \clearpage
140 \subsection{Summary of results}
141
142 In summary, in the signal region defined as $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$:\\
143 We observe 1 event. \\
144 We expect 1.3 events from Standard Model MC prediction. \\
145 The ABCD data driven method predicts $1.3 \pm 0.8({\rm stat}) \pm 0.3({\rm syst})$ events. \\
146 The $P_T(\ell\ell)$ method predicts $2.1 \pm 2.1({\rm stat}) \pm 0.6({\rm syst})$ events. \\
147
148 All three background estimates are consistent within their uncertainties.
149 We thus take as our best estimate of the Standard Model yield in
150 the signal region the average of the predicted yields from the 2 data-driven methods,
151 weighted by their uncertainties.
152 This procedure gives an expected background yield $N_{BG}=1.4 \pm 0.8$.
153
154 We conclude that we see no evidence for an anomalous
155 rate of opposite sign isolated dilepton events
156 at high \met and high SumJetPt. The extraction of
157 quantitative limits on new physics models is discussed
158 in Section~\ref{sec:limit}.