ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/sigregion.tex
Revision: 1.6
Committed: Thu Dec 2 15:29:51 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +2 -2 lines
Log Message:
Update MC yields

File Contents

# User Rev Content
1 claudioc 1.1 \section{Definition of the signal region}
2     \label{sec:sigregion}
3    
4     We define a signal region to look for possible
5     new physics contributions in the opposite sign isolated
6     dilepton sample. The choice of signal region is driven by
7     three observations:
8     \begin{enumerate}
9 benhoob 1.3 \item astrophysical evidence for dark matter suggests that
10 claudioc 1.1 we concentrate on the region of high \met;
11     \item new physics signals should have high $\sqrt{\hat{s}}$;
12     \item observable high cross section new physics signals
13     are likely to be produced strongly; thus, we expect significant
14     hadronic activity in conjunction with the two leptons.
15     \end{enumerate}
16    
17     Following these observations, we add the following two requirements
18     to the preselection of Section~\ref{sec:eventSel}:
19     \begin{center}
20 benhoob 1.3 $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$.
21 claudioc 1.1 \end{center}
22    
23     \noindent This selection preserves about 1\% of the $t\bar{t}$
24 benhoob 1.6 signal. As shown in Table~\ref{tab:sigyield}, the expected total SM yield in 35 pb$^{-1}$ is 1.3 events,
25     while the expectations from the LMO and LM1 SUSY benchmark points are 6.3 and
26 benhoob 1.4 2.6 events, respectively.
27 benhoob 1.2
28    
29     We cut on \met$/\sqrt{\rm SumJetPt}$ rather than \met
30 benhoob 1.3 because the variables SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are
31 claudioc 1.1 largely uncorrelated for the dominant $t\bar{t}$ background.
32     This allows us to use a data driven ABCD method to estimate the
33     background (see Section~\ref{sec:abcd}).
34 benhoob 1.4
35    
36    
37    
38     \begin{table}[hbt]
39     \begin{center}
40     \caption{\label{tab:sigyield} MC expected yields in the signal region for 35~pb$^{-1}$.
41     The errors are statistical only.}
42     \begin{tabular}{lcccc}
43     \hline
44     Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\
45     \hline
46     $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 0.27 $\pm$ 0.03 & 0.22 $\pm$ 0.03 & 0.56 $\pm$ 0.05 & 1.05 $\pm$ 0.06 \\
47     $t\bar{t}\rightarrow \mathrm{other}$ & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
48 benhoob 1.5 $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 \\
49 benhoob 1.4 $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
50     $W^+W^-$ & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 \\
51     $W^{\pm}Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
52     $Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
53     single top & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
54     \hline
55     total SM MC & 0.35 $\pm$ 0.06 & 0.29 $\pm$ 0.06 & 0.65 $\pm$ 0.07 & 1.29 $\pm$ 0.11 \\
56     \hline
57     data & 0 & 0 & 1 & 1 \\
58     \hline
59     LM0 & 1.75 $\pm$ 0.10 & 2.10 $\pm$ 0.11 & 2.42 $\pm$ 0.12 & 6.28 $\pm$ 0.20 \\
60     LM1 & 0.90 $\pm$ 0.03 & 1.10 $\pm$ 0.03 & 0.57 $\pm$ 0.02 & 2.57 $\pm$ 0.04 \\
61     \hline
62     \end{tabular}
63     \end{center}
64     \end{table}