1 |
claudioc |
1.1 |
\section{Definition of the signal region}
|
2 |
|
|
\label{sec:sigregion}
|
3 |
|
|
|
4 |
|
|
We define a signal region to look for possible
|
5 |
|
|
new physics contributions in the opposite sign isolated
|
6 |
|
|
dilepton sample. The choice of signal region is driven by
|
7 |
|
|
three observations:
|
8 |
|
|
\begin{enumerate}
|
9 |
benhoob |
1.3 |
\item astrophysical evidence for dark matter suggests that
|
10 |
claudioc |
1.1 |
we concentrate on the region of high \met;
|
11 |
|
|
\item new physics signals should have high $\sqrt{\hat{s}}$;
|
12 |
|
|
\item observable high cross section new physics signals
|
13 |
|
|
are likely to be produced strongly; thus, we expect significant
|
14 |
|
|
hadronic activity in conjunction with the two leptons.
|
15 |
|
|
\end{enumerate}
|
16 |
|
|
|
17 |
|
|
Following these observations, we add the following two requirements
|
18 |
|
|
to the preselection of Section~\ref{sec:eventSel}:
|
19 |
|
|
\begin{center}
|
20 |
benhoob |
1.3 |
$\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$.
|
21 |
claudioc |
1.1 |
\end{center}
|
22 |
|
|
|
23 |
|
|
\noindent This selection preserves about 1\% of the $t\bar{t}$
|
24 |
benhoob |
1.8 |
signal. As shown in Table~\ref{tab:sigyield}, the expected total SM yield in 34.0~pb$^{-1}$ is 1.3 events,
|
25 |
|
|
while the expectations from the LMO and LM1 SUSY benchmark points are 8.6 and
|
26 |
|
|
3.6 events, respectively, computed at NLO.
|
27 |
benhoob |
1.2 |
|
28 |
|
|
|
29 |
|
|
We cut on \met$/\sqrt{\rm SumJetPt}$ rather than \met
|
30 |
benhoob |
1.3 |
because the variables SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are
|
31 |
claudioc |
1.1 |
largely uncorrelated for the dominant $t\bar{t}$ background.
|
32 |
|
|
This allows us to use a data driven ABCD method to estimate the
|
33 |
|
|
background (see Section~\ref{sec:abcd}).
|
34 |
benhoob |
1.4 |
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
\begin{table}[hbt]
|
39 |
|
|
\begin{center}
|
40 |
benhoob |
1.7 |
\caption{\label{tab:sigyield} MC expected yields in the signal region for 34.0~pb$^{-1}$.
|
41 |
benhoob |
1.4 |
The errors are statistical only.}
|
42 |
|
|
\begin{tabular}{lcccc}
|
43 |
benhoob |
1.7 |
%%%official json v3, 33.96/pb, 38X MC (D6T for ttbar and DY)
|
44 |
benhoob |
1.4 |
\hline
|
45 |
|
|
Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\
|
46 |
|
|
\hline
|
47 |
benhoob |
1.7 |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 0.28 $\pm$ 0.03 & 0.22 $\pm$ 0.03 & 0.57 $\pm$ 0.05 & 1.07 $\pm$ 0.06 \\
|
48 |
benhoob |
1.4 |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
|
49 |
benhoob |
1.7 |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.04 $\pm$ 0.04 & 0.04 $\pm$ 0.04 & 0.04 $\pm$ 0.04 & 0.12 $\pm$ 0.07 \\
|
50 |
benhoob |
1.4 |
$W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
51 |
|
|
$W^+W^-$ & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 \\
|
52 |
|
|
$W^{\pm}Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
53 |
|
|
$Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
54 |
|
|
single top & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
|
55 |
|
|
\hline
|
56 |
benhoob |
1.7 |
total SM MC & 0.34 $\pm$ 0.05 & 0.28 $\pm$ 0.05 & 0.65 $\pm$ 0.06 & 1.27 $\pm$ 0.10 \\
|
57 |
benhoob |
1.4 |
\hline
|
58 |
|
|
data & 0 & 0 & 1 & 1 \\
|
59 |
|
|
\hline
|
60 |
benhoob |
1.8 |
% LM0 & 1.71 $\pm$ 0.10 & 2.05 $\pm$ 0.11 & 2.36 $\pm$ 0.12 & 6.12 $\pm$ 0.19 \\
|
61 |
|
|
% LM1 & 0.87 $\pm$ 0.03 & 1.08 $\pm$ 0.03 & 0.55 $\pm$ 0.02 & 2.50 $\pm$ 0.04 \\
|
62 |
|
|
%susy k-factors
|
63 |
|
|
LM0 & 2.37 $\pm$ 0.14 & 2.85 $\pm$ 0.15 & 3.41 $\pm$ 0.17 & 8.63 $\pm$ 0.27 \\
|
64 |
|
|
LM1 & 1.24 $\pm$ 0.04 & 1.51 $\pm$ 0.04 & 0.81 $\pm$ 0.03 & 3.56 $\pm$ 0.06 \\
|
65 |
|
|
|
66 |
benhoob |
1.4 |
\hline
|
67 |
|
|
\end{tabular}
|
68 |
|
|
\end{center}
|
69 |
|
|
\end{table} |