1 |
\section{Definition of the signal region}
|
2 |
\label{sec:sigregion}
|
3 |
|
4 |
We define a signal region to look for possible
|
5 |
new physics contributions in the opposite sign isolated
|
6 |
dilepton sample. The choice of signal region is driven by
|
7 |
three observations:
|
8 |
\begin{enumerate}
|
9 |
\item astrophysical evidence for dark matter suggests that
|
10 |
we concentrate on the region of high \met;
|
11 |
\item new physics signals should have high $\sqrt{\hat{s}}$;
|
12 |
\item observable high cross section new physics signals
|
13 |
are likely to be produced strongly; thus, we expect significant
|
14 |
hadronic activity in conjunction with the two leptons.
|
15 |
\end{enumerate}
|
16 |
|
17 |
Following these observations, we add the following two requirements
|
18 |
to the preselection of Section~\ref{sec:eventSel}:
|
19 |
\begin{center}
|
20 |
$\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$.
|
21 |
\end{center}
|
22 |
|
23 |
\noindent This selection preserves about 1\% of the $t\bar{t}$
|
24 |
signal. As shown in Table~\ref{tab:sigyield}, the expected total SM yield in 35 pb$^{-1}$ is 1.4 events,
|
25 |
while the expectations from the LMO and LM1 SUSY benchmark points are 6.5 and
|
26 |
2.6 events, respectively.
|
27 |
|
28 |
|
29 |
We cut on \met$/\sqrt{\rm SumJetPt}$ rather than \met
|
30 |
because the variables SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are
|
31 |
largely uncorrelated for the dominant $t\bar{t}$ background.
|
32 |
This allows us to use a data driven ABCD method to estimate the
|
33 |
background (see Section~\ref{sec:abcd}).
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
\begin{table}[hbt]
|
39 |
\begin{center}
|
40 |
\caption{\label{tab:sigyield} MC expected yields in the signal region for 35~pb$^{-1}$.
|
41 |
The errors are statistical only.}
|
42 |
\begin{tabular}{lcccc}
|
43 |
\hline
|
44 |
Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\
|
45 |
\hline
|
46 |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 0.27 $\pm$ 0.03 & 0.22 $\pm$ 0.03 & 0.56 $\pm$ 0.05 & 1.05 $\pm$ 0.06 \\
|
47 |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
|
48 |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 \\
|
49 |
$W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
50 |
$W^+W^-$ & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 \\
|
51 |
$W^{\pm}Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
52 |
$Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
|
53 |
single top & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
|
54 |
\hline
|
55 |
total SM MC & 0.35 $\pm$ 0.06 & 0.29 $\pm$ 0.06 & 0.65 $\pm$ 0.07 & 1.29 $\pm$ 0.11 \\
|
56 |
\hline
|
57 |
data & 0 & 0 & 1 & 1 \\
|
58 |
\hline
|
59 |
LM0 & 1.75 $\pm$ 0.10 & 2.10 $\pm$ 0.11 & 2.42 $\pm$ 0.12 & 6.28 $\pm$ 0.20 \\
|
60 |
LM1 & 0.90 $\pm$ 0.03 & 1.10 $\pm$ 0.03 & 0.57 $\pm$ 0.02 & 2.57 $\pm$ 0.04 \\
|
61 |
\hline
|
62 |
\end{tabular}
|
63 |
\end{center}
|
64 |
\end{table} |