ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/sigregion.tex
Revision: 1.5
Committed: Thu Dec 2 11:02:50 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.4: +1 -4 lines
Log Message:
Combine DY samples

File Contents

# Content
1 \section{Definition of the signal region}
2 \label{sec:sigregion}
3
4 We define a signal region to look for possible
5 new physics contributions in the opposite sign isolated
6 dilepton sample. The choice of signal region is driven by
7 three observations:
8 \begin{enumerate}
9 \item astrophysical evidence for dark matter suggests that
10 we concentrate on the region of high \met;
11 \item new physics signals should have high $\sqrt{\hat{s}}$;
12 \item observable high cross section new physics signals
13 are likely to be produced strongly; thus, we expect significant
14 hadronic activity in conjunction with the two leptons.
15 \end{enumerate}
16
17 Following these observations, we add the following two requirements
18 to the preselection of Section~\ref{sec:eventSel}:
19 \begin{center}
20 $\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$.
21 \end{center}
22
23 \noindent This selection preserves about 1\% of the $t\bar{t}$
24 signal. As shown in Table~\ref{tab:sigyield}, the expected total SM yield in 35 pb$^{-1}$ is 1.4 events,
25 while the expectations from the LMO and LM1 SUSY benchmark points are 6.5 and
26 2.6 events, respectively.
27
28
29 We cut on \met$/\sqrt{\rm SumJetPt}$ rather than \met
30 because the variables SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are
31 largely uncorrelated for the dominant $t\bar{t}$ background.
32 This allows us to use a data driven ABCD method to estimate the
33 background (see Section~\ref{sec:abcd}).
34
35
36
37
38 \begin{table}[hbt]
39 \begin{center}
40 \caption{\label{tab:sigyield} MC expected yields in the signal region for 35~pb$^{-1}$.
41 The errors are statistical only.}
42 \begin{tabular}{lcccc}
43 \hline
44 Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\
45 \hline
46 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 0.27 $\pm$ 0.03 & 0.22 $\pm$ 0.03 & 0.56 $\pm$ 0.05 & 1.05 $\pm$ 0.06 \\
47 $t\bar{t}\rightarrow \mathrm{other}$ & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\
48 $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 \\
49 $W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
50 $W^+W^-$ & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 \\
51 $W^{\pm}Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
52 $Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\
53 single top & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\
54 \hline
55 total SM MC & 0.35 $\pm$ 0.06 & 0.29 $\pm$ 0.06 & 0.65 $\pm$ 0.07 & 1.29 $\pm$ 0.11 \\
56 \hline
57 data & 0 & 0 & 1 & 1 \\
58 \hline
59 LM0 & 1.75 $\pm$ 0.10 & 2.10 $\pm$ 0.11 & 2.42 $\pm$ 0.12 & 6.28 $\pm$ 0.20 \\
60 LM1 & 0.90 $\pm$ 0.03 & 1.10 $\pm$ 0.03 & 0.57 $\pm$ 0.02 & 2.57 $\pm$ 0.04 \\
61 \hline
62 \end{tabular}
63 \end{center}
64 \end{table}