6 |
|
dilepton sample. The choice of signal region is driven by |
7 |
|
three observations: |
8 |
|
\begin{enumerate} |
9 |
< |
\item astrophisical evidence for dark matter suggests that |
9 |
> |
\item astrophysical evidence for dark matter suggests that |
10 |
|
we concentrate on the region of high \met; |
11 |
|
\item new physics signals should have high $\sqrt{\hat{s}}$; |
12 |
|
\item observable high cross section new physics signals |
17 |
|
Following these observations, we add the following two requirements |
18 |
|
to the preselection of Section~\ref{sec:eventSel}: |
19 |
|
\begin{center} |
20 |
< |
SumJetPt$>$300 GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$. |
20 |
> |
$\mathrm{SumJetPt}>300$~GeV and $\met/\sqrt{\rm SumJetPt} > 8.5$~GeV$^{1/2}$. |
21 |
|
\end{center} |
22 |
|
|
23 |
|
\noindent This selection preserves about 1\% of the $t\bar{t}$ |
24 |
< |
signal, giving an expected total SM yield of 1.4 events in 35 pb$^{-1}$ |
25 |
< |
The expectations from the LMO and LM1 SUSY benchmark points are 6.5 and |
26 |
< |
2.6 events respectively. |
24 |
> |
signal. As shown in Table~\ref{tab:sigyield}, the expected total SM yield in 35 pb$^{-1}$ is 1.4 events, |
25 |
> |
while the expectations from the LMO and LM1 SUSY benchmark points are 6.5 and |
26 |
> |
2.6 events, respectively. |
27 |
|
|
28 |
|
|
29 |
|
We cut on \met$/\sqrt{\rm SumJetPt}$ rather than \met |
30 |
< |
because the variables \met and \met$/\sqrt{\rm SumJetPt}$ are |
30 |
> |
because the variables SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are |
31 |
|
largely uncorrelated for the dominant $t\bar{t}$ background. |
32 |
|
This allows us to use a data driven ABCD method to estimate the |
33 |
|
background (see Section~\ref{sec:abcd}). |
34 |
+ |
|
35 |
+ |
|
36 |
+ |
|
37 |
+ |
|
38 |
+ |
\begin{table}[hbt] |
39 |
+ |
\begin{center} |
40 |
+ |
\caption{\label{tab:sigyield} MC expected yields in the signal region for 35~pb$^{-1}$. |
41 |
+ |
The errors are statistical only.} |
42 |
+ |
\begin{tabular}{lcccc} |
43 |
+ |
|
44 |
+ |
\hline |
45 |
+ |
Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\ |
46 |
+ |
\hline |
47 |
+ |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 0.27 $\pm$ 0.03 & 0.22 $\pm$ 0.03 & 0.56 $\pm$ 0.05 & 1.05 $\pm$ 0.06 \\ |
48 |
+ |
$t\bar{t}\rightarrow \mathrm{other}$ & 0.01 $\pm$ 0.01 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.01 & 0.02 $\pm$ 0.01 \\ |
49 |
+ |
Z^0 \rightarrow e^{+}e^{-} & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ |
50 |
+ |
Z^0 \rightarrow \mu^{+}\mu^{-} & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ |
51 |
+ |
Z^0 \rightarrow \tau^{+}\tau^{-} & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 \\ |
52 |
+ |
$W^{\pm}$ + jets & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ |
53 |
+ |
$W^+W^-$ & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.01 & 0.03 $\pm$ 0.01 \\ |
54 |
+ |
$W^{\pm}Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ |
55 |
+ |
$Z^0Z^0$ & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 \\ |
56 |
+ |
single top & 0.00 $\pm$ 0.00 & 0.00 $\pm$ 0.00 & 0.01 $\pm$ 0.00 & 0.01 $\pm$ 0.00 \\ |
57 |
+ |
\hline |
58 |
+ |
total SM MC & 0.35 $\pm$ 0.06 & 0.29 $\pm$ 0.06 & 0.65 $\pm$ 0.07 & 1.29 $\pm$ 0.11 \\ |
59 |
+ |
\hline |
60 |
+ |
data & 0 & 0 & 1 & 1 \\ |
61 |
+ |
\hline |
62 |
+ |
LM0 & 1.75 $\pm$ 0.10 & 2.10 $\pm$ 0.11 & 2.42 $\pm$ 0.12 & 6.28 $\pm$ 0.20 \\ |
63 |
+ |
LM1 & 0.90 $\pm$ 0.03 & 1.10 $\pm$ 0.03 & 0.57 $\pm$ 0.02 & 2.57 $\pm$ 0.04 \\ |
64 |
+ |
\hline |
65 |
+ |
\end{tabular} |
66 |
+ |
\end{center} |
67 |
+ |
\end{table} |