ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/triggereff.tex
Revision: 1.2
Committed: Thu Nov 4 04:14:21 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +235 -2 lines
Log Message:
various

File Contents

# User Rev Content
1 claudioc 1.1 \section{Trigger efficiency}
2     \label{sec:trgEff}
3    
4 claudioc 1.2 As described in Section~\ref{sec:trigSel} we rely on a
5     mixture of single and double lepton triggers. The trigger
6     efficiency is very high because for most of the phase space
7     we have two leptons each of which can fire a single lepton
8     trigger -- and the single lepton triggers are very efficient.
9    
10     We apply to MC events a simplified model of the trigger efficiency
11     as a function of dilepton species ($ee$, $e\mu$, $\mu\mu$), the $P_T$
12     of the individual leptons, and, in the case of muons, the $|\eta|$
13     of the muons. We believe that this model is adequate for
14     the trigger efficiency precision needed for this analysis.
15    
16     The model assumptions are the following
17    
18     \begin{itemize}
19    
20     \item Muon and electron trigger turn-ons as a function of $P_T$
21     are infinitely sharp. {\color{red} Can we add references?}
22    
23     \item All electron triggers with no ID have 100\%
24     efficiency for electrons passing our analysis cuts. {\color{red}
25     Can we add a reference? Pehaps the top documentation?}
26    
27     \item Electron triggers with (Tight(er))CaloEleId have 100\%
28     efficiency with respect to our offline selection. This we
29     verified via tag-and-probe on $Z\to ee$.
30    
31     \item Electron triggers with EleId have somewhat lower
32     efficiency. This was also measured by tag-and-probe.
33    
34     \item The single muon trigger has zero efficiency for $|\eta|>2.1$.
35     This is conservative, the trigger efficiency here is of order
36     $\approx 40\%$.
37    
38     \item If a muon in $|\eta|>2.1$ fails the single muon trigger, it
39     will also fail the double muon trigger.
40    
41     \item The double muon trigger has efficiency
42     equal to the square of the single muon efficiency.
43    
44     \item The $e\mu$ triggers have no efficiency if the muon has $|\eta|>2.1$.
45    
46     \end{itemize}
47    
48     The model also uses some luminosity fractions and some trigger
49     efficiencies.
50    
51     \begin{itemize}
52    
53     \item $\epsilon_{\mu}$=xx, the single muon trigger efficiency plateau.
54    
55     \item $f9$=xx: fraction of data with the Mu9 trigger unprescaled.
56     (run$\le 147116$).
57    
58     \item $f11$=xx fraction of data with the Mu9 trigger prescaled and
59     the Mu11 trigger unprescaled.
60     (147196 $\leq$ run $\leq$ 148058).
61    
62     \item $e10$=xx: fraction of data with the 10 GeV unprescaled electron triggers.
63     (run$\le 139980$).
64    
65     \item $e15$=xx: fraction of data with the 15 GeV unprescaled electron triggers.
66     (139980 $<$ run $\leq$ 144114).
67    
68     \item $e17$=xx: fraction of data with the 100\% efficient 17 GeV unprescaled electron triggers.
69     (144114 $<$ run $\leq$ 147116).
70    
71     \item $e17b$=xx: fraction of data with 17 GeV unprescaled electron triggers
72     with efficiency $\epsilon_e^b=90\%$ (as measured by tag-and-probe).
73     (147116 $<$ run $\leq$ 148058).
74    
75     \item $emess$=xx: the remainder of the run with several different electron
76     triggers, all of $P_T>17$ GeV. For this period we measure the
77     luminosity-weighted
78     trigger efficiency $\epsilon(P_T)$ via tag and probe to be 99\%
79     ($17<P_T<22$, 97\% ($22<P_T<27$), 98\% ($27<P_T<32$) and
80     100\% ($P_T>32$).
81    
82     \end{itemize}
83    
84     The full trigger efficiency model is described separately for
85     $ee$, $e\mu$, and $\mu\mu$.
86    
87     \subsection{$ee$ efficiency model}
88     \label{sec:eemodel}
89    
90     This is the easiest. Throughout the 2010 run we have always
91     had dielectron triggers with thresholds lower than our (20,10)
92     analysis thresholds. Since electron triggers are 100\% efficient,
93     the trigger efficiency for $ee$ is 100\%. We have verified that
94     the efficiency of the dielectron trigger is 100\% with respect
95     to the single electron trigger using $Z \to ee$ data.
96    
97     \subsection{$\mu\mu$ efficiency model}
98     \label{sec:mmmodel}
99    
100     We consider different cases.
101    
102     \subsubsection{Both muons in $|\eta|<2.1$ and with $P_T>15$ GeV}
103     This is the bulk of the $\mu\mu$.
104    
105     \begin{center}
106     $\epsilon = 1 - (1-\epsilon_{\mu})^2$
107     \end{center}
108    
109     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $11<P_T<15$ GeV}
110     In this case there must be a muon with $P_T>20$ GeV. The single muon
111     trigger is operative for the full dataset on this muon. Some loss
112     of efficiency can be recovered when the 2nd muon fires the trigger.
113     But this can happen only for a fraction of the run. The dimuon trigger
114     cannot fire in our model to recover any of the efficiency lost by
115     the single muon trigger on the high $P_T$ muon.
116    
117     \begin{center}
118     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}(f9+f11)$
119     \end{center}
120    
121     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $10<P_T<11$ GeV}
122     Same basic idea as above.
123    
124     \begin{center}
125     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}f9$
126     \end{center}
127    
128     \subsubsection{Both muons with $|\eta|>2.1$}
129     This is a very small fraction of events. In our model they can only be
130     triggered by the dimuon trigger.
131    
132     \begin{center}
133     $\epsilon = \epsilon_{\mu}^2$
134     \end{center}
135    
136     \subsubsection{First muon with $P_T>15$ and $|\eta|<2.1$; second muon
137     with $|\eta|>2.1$}
138     The single muon trigger is always operative. If it fails the double muon
139     trigger also fails.
140    
141     \begin{center}
142     $\epsilon = \epsilon_{\mu}$
143     \end{center}
144    
145     \subsubsection{First muon with $11<P_T<15$ and $|\eta|<2.1$; second muon
146     with $|\eta|>2.1$}
147     The single muon trigger is operative only for a fraction of the run.
148     For the remaining fraction, we must rely on the double muon trigger.
149    
150     \begin{center}
151     $\epsilon = (f9+f11)\epsilon_{\mu} + (1-f9-f11)\epsilon_{\mu}^2$
152     \end{center}
153    
154     \subsubsection{First muon with $10<P_T<11$ and $|\eta|<2.1$; second muon
155     with $|\eta|>2.1$}
156     Same basic idea as above.
157    
158     \begin{center}
159     $\epsilon = f9~\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2$
160     \end{center}
161    
162     \subsection{$e\mu$ efficiency model}
163     \label{sec:emumodel}
164    
165     This is the most complicated case. The idea is that the muon trigger
166     is used to get the bulk of the efficiency. Then the single electron
167     trigger(s) and the $e\mu$ triggers are used to get back dome of the
168     efficiency loss. The various cases are listed below.
169    
170     \subsubsection{Muon with $|\eta|<2.1$ and $P_T>15$}
171     This is the bulk of the acceptance.
172    
173     \begin{center}
174     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_1$
175     \end{center}
176    
177     where $\Delta_1$ is the efficiency from the electron trigger:
178     \begin{itemize}
179     \item $P_T(ele)<15 \to \Delta_1=e10$
180     \item $15<P_T(ele)<17 \to \Delta_1=e10+e15$
181     \item $P_T(ele)>15 \to \Delta_1=e10+e15+e17+\epsilon_e^b~e17b+\epsilon(P_T)~emess$
182     \end{itemize}
183    
184    
185     \subsubsection{Muon with $|\eta|<2.1$ and $11<P_T>15$}
186    
187     This is the similar to the previous case, except that the muon
188     trigger is operative only for a subset of the data taking period.
189    
190     \begin{center}
191     $\epsilon = (f11+f9)\epsilon_{\mu} + \Delta_2 + \Delta_3$
192     \end{center}
193    
194     Here $\Delta_2$ is associated with the period where the muon
195     trigger was at 15 GeV, in which case we use electron triggers or
196     $e\mu$ triggers. Note that the electron in this case must be
197     above 20 GeV. This can happen only in the latter part of the run,
198     thus we write
199     \begin{center}
200     $\Delta_2 = (1-f11-f9)~(\epsilon_{\mu}~+~
201     (1-\epsilon_{\mu})\epsilon(P_T))$
202     \end{center}
203     \noindent where the first term is for the $e\mu$ trigger and the
204     second term corresponds to $e\mu$ trigger failures, in which case we have
205     to rely on the electron trigger.
206    
207     Then, $\Delta_3$ is associated with muon trigger failures in early runs,
208     {\em i.e.}, run $<148819$. In this case the electron trigger picks it
209     up and the $e\mu$ trigger does not help.
210    
211     \begin{center}
212     $\Delta_3 = (f11+f9)(1-\epsilon_{\mu}) \cdot \epsilon_e$
213     \end{center}
214    
215     \noindent where $\epsilon_e$ is the efficiency of the electron
216     trigger for $P_T>20$. This is 100\% up to run 147716 (fraction
217     $(e10_e15+e17)/(f11+f9)$; then it is somewhat lower up to
218     run 148058, then it becomes very close to 100\% again.
219     For this latter part of the run we approximate it as $\epsilon_e^b$.
220     Thus:
221    
222     \begin{center}
223     $\epsilon_e = (e10_e15+e17)/(f11+f9) +
224     \epsilon_e^b(f11+f9-e10-e15-e17)/(f11+f9)$
225     \end{center}
226    
227     \subsubsection{Muon with $|\eta|<2.1$ and $9<P_T>11$}
228    
229     Identical to the previous case, but replace $(f11+f9)$ with $f9$ everywhere.
230    
231     \subsubsection{Muon with $|\eta|>2.1$}
232    
233     This is a 10\% effect to start with. We assume no single muon efficiency,
234     no $e\mu$ efficiency. Then we can only ise the single electron trigger.
235    
236     \begin{center}
237     $\epsilon = \Delta_1$
238     \end{center}