ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/triggereff.tex
Revision: 1.3
Committed: Fri Nov 5 23:07:43 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
CVS Tags: nov8th
Branch point for: NovSync
Changes since 1.2: +25 -10 lines
Log Message:
more better

File Contents

# User Rev Content
1 claudioc 1.1 \section{Trigger efficiency}
2     \label{sec:trgEff}
3    
4 claudioc 1.2 As described in Section~\ref{sec:trigSel} we rely on a
5     mixture of single and double lepton triggers. The trigger
6     efficiency is very high because for most of the phase space
7     we have two leptons each of which can fire a single lepton
8     trigger -- and the single lepton triggers are very efficient.
9    
10     We apply to MC events a simplified model of the trigger efficiency
11     as a function of dilepton species ($ee$, $e\mu$, $\mu\mu$), the $P_T$
12     of the individual leptons, and, in the case of muons, the $|\eta|$
13     of the muons. We believe that this model is adequate for
14     the trigger efficiency precision needed for this analysis.
15    
16 claudioc 1.3 The model assumptions are the following {\color{red} (The
17     xx below need to be fixed using the final JSON. For the 11 pb
18     iteration the trigger efficiency was taken as 100\%)}
19 claudioc 1.2
20     \begin{itemize}
21    
22     \item Muon and electron trigger turn-ons as a function of $P_T$
23     are infinitely sharp. {\color{red} Can we add references?}
24    
25     \item All electron triggers with no ID have 100\%
26     efficiency for electrons passing our analysis cuts. {\color{red}
27     Can we add a reference? Pehaps the top documentation?}
28    
29     \item Electron triggers with (Tight(er))CaloEleId have 100\%
30     efficiency with respect to our offline selection. This we
31     verified via tag-and-probe on $Z\to ee$.
32    
33     \item Electron triggers with EleId have somewhat lower
34     efficiency. This was also measured by tag-and-probe.
35    
36     \item The single muon trigger has zero efficiency for $|\eta|>2.1$.
37     This is conservative, the trigger efficiency here is of order
38     $\approx 40\%$.
39    
40     \item If a muon in $|\eta|>2.1$ fails the single muon trigger, it
41     will also fail the double muon trigger.
42    
43     \item The double muon trigger has efficiency
44     equal to the square of the single muon efficiency.
45    
46     \item The $e\mu$ triggers have no efficiency if the muon has $|\eta|>2.1$.
47    
48     \end{itemize}
49    
50     The model also uses some luminosity fractions and some trigger
51     efficiencies.
52    
53     \begin{itemize}
54    
55 claudioc 1.3 \item $\epsilon_{\mu}$={\color{red}xx}, the single muon trigger efficiency plateau.
56 claudioc 1.2
57 claudioc 1.3 \item $f9$={\color{red}xx}: fraction of data with the Mu9 trigger unprescaled.
58 claudioc 1.2 (run$\le 147116$).
59    
60 claudioc 1.3 \item $f11$={\color{red}xx} fraction of data with the Mu9 trigger prescaled and
61 claudioc 1.2 the Mu11 trigger unprescaled.
62     (147196 $\leq$ run $\leq$ 148058).
63    
64 claudioc 1.3 \item $e10$={\color{red}xx}: fraction of data with the 10 GeV unprescaled electron triggers.
65 claudioc 1.2 (run$\le 139980$).
66    
67 claudioc 1.3 \item $e15$={\color{red}xx}: fraction of data with the 15 GeV unprescaled electron triggers.
68 claudioc 1.2 (139980 $<$ run $\leq$ 144114).
69    
70 claudioc 1.3 \item $e17$={\color{red}xx}: fraction of data with the 100\% efficient 17 GeV unprescaled electron triggers.
71 claudioc 1.2 (144114 $<$ run $\leq$ 147116).
72    
73 claudioc 1.3 \item $e17b$={\color{red}xx}: fraction of data with 17 GeV unprescaled electron triggers
74 claudioc 1.2 with efficiency $\epsilon_e^b=90\%$ (as measured by tag-and-probe).
75     (147116 $<$ run $\leq$ 148058).
76    
77 claudioc 1.3 \item $emess$={\color{red}xx}: the remainder of the run with several different electron
78 claudioc 1.2 triggers, all of $P_T>17$ GeV. For this period we measure the
79     luminosity-weighted
80     trigger efficiency $\epsilon(P_T)$ via tag and probe to be 99\%
81     ($17<P_T<22$, 97\% ($22<P_T<27$), 98\% ($27<P_T<32$) and
82     100\% ($P_T>32$).
83    
84     \end{itemize}
85    
86     The full trigger efficiency model is described separately for
87     $ee$, $e\mu$, and $\mu\mu$.
88    
89     \subsection{$ee$ efficiency model}
90     \label{sec:eemodel}
91    
92     This is the easiest. Throughout the 2010 run we have always
93     had dielectron triggers with thresholds lower than our (20,10)
94     analysis thresholds. Since electron triggers are 100\% efficient,
95     the trigger efficiency for $ee$ is 100\%. We have verified that
96     the efficiency of the dielectron trigger is 100\% with respect
97     to the single electron trigger using $Z \to ee$ data.
98    
99     \subsection{$\mu\mu$ efficiency model}
100     \label{sec:mmmodel}
101    
102     We consider different cases.
103    
104     \subsubsection{Both muons in $|\eta|<2.1$ and with $P_T>15$ GeV}
105     This is the bulk of the $\mu\mu$.
106    
107     \begin{center}
108     $\epsilon = 1 - (1-\epsilon_{\mu})^2$
109     \end{center}
110    
111     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $11<P_T<15$ GeV}
112     In this case there must be a muon with $P_T>20$ GeV. The single muon
113     trigger is operative for the full dataset on this muon. Some loss
114     of efficiency can be recovered when the 2nd muon fires the trigger.
115     But this can happen only for a fraction of the run. The dimuon trigger
116     cannot fire in our model to recover any of the efficiency lost by
117     the single muon trigger on the high $P_T$ muon.
118    
119     \begin{center}
120     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}(f9+f11)$
121     \end{center}
122    
123     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $10<P_T<11$ GeV}
124     Same basic idea as above.
125    
126     \begin{center}
127     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}f9$
128     \end{center}
129    
130     \subsubsection{Both muons with $|\eta|>2.1$}
131     This is a very small fraction of events. In our model they can only be
132     triggered by the dimuon trigger.
133    
134     \begin{center}
135     $\epsilon = \epsilon_{\mu}^2$
136     \end{center}
137    
138     \subsubsection{First muon with $P_T>15$ and $|\eta|<2.1$; second muon
139     with $|\eta|>2.1$}
140     The single muon trigger is always operative. If it fails the double muon
141     trigger also fails.
142    
143     \begin{center}
144     $\epsilon = \epsilon_{\mu}$
145     \end{center}
146    
147     \subsubsection{First muon with $11<P_T<15$ and $|\eta|<2.1$; second muon
148     with $|\eta|>2.1$}
149     The single muon trigger is operative only for a fraction of the run.
150     For the remaining fraction, we must rely on the double muon trigger.
151    
152     \begin{center}
153     $\epsilon = (f9+f11)\epsilon_{\mu} + (1-f9-f11)\epsilon_{\mu}^2$
154     \end{center}
155    
156     \subsubsection{First muon with $10<P_T<11$ and $|\eta|<2.1$; second muon
157     with $|\eta|>2.1$}
158     Same basic idea as above.
159    
160     \begin{center}
161     $\epsilon = f9~\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2$
162     \end{center}
163    
164     \subsection{$e\mu$ efficiency model}
165     \label{sec:emumodel}
166    
167     This is the most complicated case. The idea is that the muon trigger
168     is used to get the bulk of the efficiency. Then the single electron
169     trigger(s) and the $e\mu$ triggers are used to get back dome of the
170     efficiency loss. The various cases are listed below.
171    
172     \subsubsection{Muon with $|\eta|<2.1$ and $P_T>15$}
173     This is the bulk of the acceptance.
174    
175     \begin{center}
176     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_1$
177     \end{center}
178    
179     where $\Delta_1$ is the efficiency from the electron trigger:
180     \begin{itemize}
181     \item $P_T(ele)<15 \to \Delta_1=e10$
182     \item $15<P_T(ele)<17 \to \Delta_1=e10+e15$
183     \item $P_T(ele)>15 \to \Delta_1=e10+e15+e17+\epsilon_e^b~e17b+\epsilon(P_T)~emess$
184     \end{itemize}
185    
186    
187     \subsubsection{Muon with $|\eta|<2.1$ and $11<P_T>15$}
188    
189     This is the similar to the previous case, except that the muon
190     trigger is operative only for a subset of the data taking period.
191    
192     \begin{center}
193     $\epsilon = (f11+f9)\epsilon_{\mu} + \Delta_2 + \Delta_3$
194     \end{center}
195    
196     Here $\Delta_2$ is associated with the period where the muon
197     trigger was at 15 GeV, in which case we use electron triggers or
198     $e\mu$ triggers. Note that the electron in this case must be
199     above 20 GeV. This can happen only in the latter part of the run,
200     thus we write
201     \begin{center}
202     $\Delta_2 = (1-f11-f9)~(\epsilon_{\mu}~+~
203     (1-\epsilon_{\mu})\epsilon(P_T))$
204     \end{center}
205     \noindent where the first term is for the $e\mu$ trigger and the
206     second term corresponds to $e\mu$ trigger failures, in which case we have
207     to rely on the electron trigger.
208    
209     Then, $\Delta_3$ is associated with muon trigger failures in early runs,
210     {\em i.e.}, run $<148819$. In this case the electron trigger picks it
211     up and the $e\mu$ trigger does not help.
212    
213     \begin{center}
214     $\Delta_3 = (f11+f9)(1-\epsilon_{\mu}) \cdot \epsilon_e$
215     \end{center}
216    
217     \noindent where $\epsilon_e$ is the efficiency of the electron
218     trigger for $P_T>20$. This is 100\% up to run 147716 (fraction
219     $(e10_e15+e17)/(f11+f9)$; then it is somewhat lower up to
220     run 148058, then it becomes very close to 100\% again.
221     For this latter part of the run we approximate it as $\epsilon_e^b$.
222     Thus:
223    
224     \begin{center}
225     $\epsilon_e = (e10_e15+e17)/(f11+f9) +
226     \epsilon_e^b(f11+f9-e10-e15-e17)/(f11+f9)$
227     \end{center}
228    
229     \subsubsection{Muon with $|\eta|<2.1$ and $9<P_T>11$}
230    
231     Identical to the previous case, but replace $(f11+f9)$ with $f9$ everywhere.
232    
233     \subsubsection{Muon with $|\eta|>2.1$}
234    
235     This is a 10\% effect to start with. We assume no single muon efficiency,
236     no $e\mu$ efficiency. Then we can only ise the single electron trigger.
237    
238     \begin{center}
239     $\epsilon = \Delta_1$
240 claudioc 1.3 \end{center}
241    
242     \subsection{Summary of the trigger efficiency model}
243     \label{sec:trgeffsum}
244    
245     We take the trigger efficiency for $ee$ as 100\%. The trigger efficiency
246     for the $e\mu$ and $\mu\mu$ final states is summarized in Figures xx.
247     We estimate the systematic uncertainties on the trigger modeling
248     to be at the few percent level.
249    
250     \noindent {\color{red}Figure xx will be a two dimensional table of the
251     trigger efficiency as a function of the pt of the two leptons.
252     We need to wait for the xx in the previous section to be completes before we can
253     fill out this table.}