1 |
claudioc |
1.1 |
\section{Preselection yields}
|
2 |
|
|
\label{sec:yields}
|
3 |
|
|
|
4 |
|
|
The data yields and the MC predictions are given in Table~\ref{tab:yields}.
|
5 |
benhoob |
1.13 |
The MC yields are normalized to 34.0~pb$^{-1}$ using the cross-sections
|
6 |
claudioc |
1.3 |
from Reference~\cite{ref:xsec}.
|
7 |
|
|
As anticipated, the MC predicts
|
8 |
claudioc |
1.1 |
that the preselection is dominated by $t\bar{t}$. The data yield is
|
9 |
benhoob |
1.9 |
in good agreement with the prediction. Also shown are the yields for LM0
|
10 |
|
|
and LM1, two of the LM points which are benchmarks for SUSY analyses at CMS.
|
11 |
claudioc |
1.1 |
|
12 |
benhoob |
1.4 |
|
13 |
claudioc |
1.1 |
\begin{table}[htb]
|
14 |
|
|
\begin{center}
|
15 |
benhoob |
1.13 |
\caption{\label{tab:yields} Data and Monte Carlo yields (34.0~pb$^{-1}$) for the preselection.
|
16 |
benhoob |
1.7 |
($t\bar{t}\rightarrow \ell^{+}\ell^{-}$ corrresponds to dileptonic $t\bar{t}$ including
|
17 |
|
|
$t \to W \to \tau \to \ell$, $t\bar{t}\rightarrow \mathrm{other}$ are all other $t\bar{t}$ modes).}
|
18 |
benhoob |
1.4 |
\begin{tabular}{ccccc}
|
19 |
benhoob |
1.11 |
|
20 |
benhoob |
1.12 |
%%% official json v3, 33.96/pb, 38X MC (D6T ttbar and DY)
|
21 |
benhoob |
1.4 |
\hline
|
22 |
benhoob |
1.12 |
Sample & $ee$ & $\mu\mu$ & $e\mu$ & tot \\
|
23 |
benhoob |
1.4 |
\hline
|
24 |
benhoob |
1.12 |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 14.50 $\pm$ 0.24 & 17.52 $\pm$ 0.26 & 41.34 $\pm$ 0.40 & 73.36 $\pm$ 0.53 \\
|
25 |
|
|
$t\bar{t}\rightarrow \mathrm{other}$ & 0.49 $\pm$ 0.04 & 0.21 $\pm$ 0.03 & 1.02 $\pm$ 0.06 & 1.72 $\pm$ 0.08 \\
|
26 |
|
|
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 1.02 $\pm$ 0.21 & 1.16 $\pm$ 0.22 & 1.20 $\pm$ 0.22 & 3.38 $\pm$ 0.37 \\
|
27 |
|
|
$W^{\pm}$ + jets & 0.19 $\pm$ 0.13 & 0.00 $\pm$ 0.00 & 0.09 $\pm$ 0.09 & 0.28 $\pm$ 0.16 \\
|
28 |
|
|
$W^+W^-$ & 0.15 $\pm$ 0.01 & 0.16 $\pm$ 0.01 & 0.37 $\pm$ 0.02 & 0.68 $\pm$ 0.03 \\
|
29 |
|
|
$W^{\pm}Z^0$ & 0.02 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.04 $\pm$ 0.00 & 0.09 $\pm$ 0.00 \\
|
30 |
benhoob |
1.10 |
$Z^0Z^0$ & 0.01 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.02 $\pm$ 0.00 & 0.05 $\pm$ 0.00 \\
|
31 |
benhoob |
1.12 |
single top & 0.46 $\pm$ 0.02 & 0.55 $\pm$ 0.02 & 1.24 $\pm$ 0.03 & 2.25 $\pm$ 0.04 \\
|
32 |
benhoob |
1.4 |
\hline
|
33 |
benhoob |
1.12 |
total SM MC & 16.85 $\pm$ 0.34 & 19.63 $\pm$ 0.34 & 45.33 $\pm$ 0.47 & 81.81 $\pm$ 0.67 \\
|
34 |
benhoob |
1.4 |
\hline
|
35 |
benhoob |
1.12 |
data & 15 & 22 & 45 & 82 \\
|
36 |
claudioc |
1.1 |
\hline
|
37 |
benhoob |
1.13 |
% LM0 & 7.30 $\pm$ 0.21 & 8.58 $\pm$ 0.23 & 11.77 $\pm$ 0.27 & 27.66 $\pm$ 0.41 \\
|
38 |
|
|
% LM1 & 1.67 $\pm$ 0.04 & 2.01 $\pm$ 0.04 & 1.03 $\pm$ 0.03 & 4.71 $\pm$ 0.06 \\
|
39 |
|
|
%Using Sanjay k-factors
|
40 |
|
|
LM0 & 10.67 $\pm$ 0.31 & 12.63 $\pm$ 0.34 & 17.81 $\pm$ 0.41 & 41.11 $\pm$ 0.62 \\
|
41 |
|
|
LM1 & 2.35 $\pm$ 0.05 & 2.83 $\pm$ 0.06 & 1.51 $\pm$ 0.04 & 6.69 $\pm$ 0.09 \\
|
42 |
|
|
|
43 |
claudioc |
1.2 |
\hline
|
44 |
claudioc |
1.1 |
\end{tabular}
|
45 |
|
|
\end{center}
|
46 |
|
|
\end{table}
|