ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/dilNoteICHEP/fakerate.tex
Revision: 1.7
Committed: Thu Jul 8 11:37:50 2010 UTC (14 years, 10 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
CVS Tags: v8, HEAD
Changes since 1.6: +6 -6 lines
Log Message:
No OS update

File Contents

# User Rev Content
1 claudioc 1.1 \section{Fake Rate}
2     \label{sec:FR}
3    
4     \subsection{Intro}
5     The Fake Rate (FR) method has been described in a
6     separate analysis note~\cite{ref:FR} and applied
7     to a number of Monte Carlo studies\cite{ref:topdil2009},
8     \cite{ref:WW},\cite{ref:SSSusy}. Briefly, jet data
9     is used to measure a lepton FR as a function of
10     lepton $P_T$ and $|\eta|$ which is defined as the probability
11     for a lepton candidate passing loose cuts to also pass the
12     analysis cuts. Leptons passing loose cuts are called
13     ``Fakeable Objects'' (FO).
14    
15     In a given analysis the FR is then used to estimate the
16     background due to ``fake'' leptons\footnote{Here ``fake'' leptons
17     refer to truly fake leptons as well as leptons from heavy flavor decays.}
18     as follows:
19     \begin{itemize}
20     \item Events are selected using all analysis cuts, except
21     for the lepton selection. Dilepton backgrounds
22     with one real lepton and one fake lepton are estimated by
23     selecting one lepton passing the full lepton selection
24     and one failing it but passing the FO selection.
25 claudioc 1.5 Backgrounds with two fake leptons (QCD) are estimated by requiring
26 claudioc 1.1 both lepton candidates to pass the FO selection and fail
27     the full selection.
28 claudioc 1.5 \item For the QCD backgrounds considered in this note,
29     each event is weighted by the product of the two factors
30     of FR/(1-FR), where FR is the Fake
31     Rate for each of the two FO.
32 claudioc 1.1 \item The sum of the weights over the selected events is the
33     background prediction.
34     \end{itemize}
35    
36     \subsection{Fakeable Object Definitions}
37     \label{sec:FODefinition}
38    
39     Fakeable Objects are defined starting from the full
40     lepton selection by relaxing some combination of the identification
41     and isolation requirements. Since most muons in QCD events are
42     from heavy flavor decays, relaxing the identification requirements
43     is not very useful. Thus our muon FO definition consists mainly
44     of relaxing the isolation requirement. On the other hand, for
45     electrons we have more freedom and we use three separate definitions
46     of the FR. Broadly speaking these correspond to relaxing either
47     isolation, or ID, or both. Our FO definitions are given below
48    
49     Muon FO definition: relax the following muon requirements from
50     Section~\ref{sec:muID}:
51     \begin{itemize}
52    
53     \item $\chi^2$/ndof of global fit $<$ 50 (was $<$ 10).
54     \item Transverse impact parameter with respect to the beamspot
55     $<$ 2 mm (was $<$ 200 $\mu$m).
56     \item $Iso < 0.4$ (was $<$ 0.15).
57    
58     \end{itemize}
59    
60     Electron V1 FO definition: relax the following electron requirements from
61     Section~\ref{sec:eleID}:
62     \begin{itemize}
63     \item Remove the VBTF90 requirement.
64     \item $Iso < 0.4$ (was $<$ 0.15).
65     \item The impact parameter cut was removed (used to be $<$ 400 $\mu$m).
66     \end{itemize}
67    
68     Electron V2 FO definition: relax the following electron requirements from
69     Section~\ref{sec:eleID}:
70     \begin{itemize}
71     \item Remove the VBTF90 requirement.
72     \item The impact parameter cut was removed (used to be $<$ 400 $\mu$m).
73     \end{itemize}
74    
75     Electron V3 FO definition: relax the following electron requirements from
76     Section~\ref{sec:eleID}:
77     \begin{itemize}
78     \item $Iso < 0.4$ (was $<$ 0.15).
79     \item The impact parameter cut was removed (used to be $<$ 400 $\mu$m).
80     \end{itemize}
81    
82    
83     \subsection{Measuring the FR on jet data}
84     \label{sec:FRjet}
85     The FR is measured by studying lepton candidates in jet data.
86     The jet data come from the JetMetTau and JetTauMonitor
87     Primary/Secondary datasets, see Section~\ref{sec:datasets}.
88     We measure the FR on different jet triggers. The stability
89     of the FR in these different jet samples is a measure of the
90     robustness of our procedure. We select the following triggers:
91     \begin{itemize}
92     \item HLT\_L1\_Jet6U from JetMetTauMonitor
93     \item HLT\_L1\_Jet10U from JetMetTauMonitor
94     \item HLT\_Jet15U from JetMetTau
95     \item HLT\_Jet30U from JetMetTau
96     \end{itemize}
97    
98     In order to eliminate a possible trigger bias, we scan the list
99     of HLT objects associated with the given jet trigger. If there
100     is only one such object above threshold, we only consider
101     lepton candidates well separated ($\Delta R > 1$) from it.
102    
103     Furthermore, even on jet triggers it is possible to collect
104     some $W$ and $Z$ leptonic decays. These events would cause
105     a significant bias to the FR at high $P_T$. To minimize
106     this problem, we reject events with tcMet $>$ 20 GeV and
107     events with two opposite sign FO that make a mass within
108     20 GeV of the $Z$ mass
109     We believe that the bias from leftover $W$ and
110     Drell Yan events in the jet sample is small, but it remains to
111     be estimated.
112    
113     The FR are measured as a function of $P_T$ and $|\eta|$.
114 claudioc 1.3 The FR projections on the $P_T$ and $|\eta|$ axes for the muon FR and for
115 claudioc 1.1 the three (V1, V2, V3) electron FR in the different trigger samples
116 claudioc 1.6 are displayed in
117 claudioc 1.7 {\color{red} Figures~\ref{fig:muFR} and~\ref{fig:eleFR} (old)} and
118     {\color{blue}Figures~\ref{fig:muFR2} and~\ref{fig:eleFR2} (new)}.
119 claudioc 1.6
120 claudioc 1.1
121    
122     \begin{figure}[htb]
123     \begin{center}
124 claudioc 1.6 {\color{red}
125 claudioc 1.3 \includegraphics[width=0.48\linewidth]{MuFakeRatesJune1.pdf}
126     \includegraphics[width=0.48\linewidth]{muFReta.pdf}
127 claudioc 1.1 \caption{\label{fig:muFR}The muon fake rate as a function of $P_T$
128 claudioc 1.7 and $|\eta|$ in the different jet samples. (Old plots updated below).}
129 claudioc 1.6 }
130 claudioc 1.1 \end{center}
131     \end{figure}
132    
133 claudioc 1.6
134    
135 claudioc 1.1 \begin{figure}[htb]
136     \begin{center}
137 claudioc 1.6 {\color{blue}
138     \includegraphics[width=0.31\linewidth, angle=90]{MuFakeRatesJuly7.pdf}
139     \includegraphics[width=0.31\linewidth, angle=90]{muFReta7July.pdf}
140     \caption{\label{fig:muFR2}The muon fake rate as a function of $P_T$
141     and $|\eta|$ in the different jet samples. Note that these now start at
142     $P_T=$ 10 GeV instead of $P_T=$5 GeV as they did in the earlier analysis
143     because of a preselection aplied in our data handling. For this reason
144     the $\eta$-projections cannot be directly compared since the this is
145     dominated by muons of $P_T$ near threshold. Note also that the
146     muon identification requirements have changed a little bit, as
147 claudioc 1.7 described in Section 3.1.5. (New updated plots).}
148 claudioc 1.6 }
149     \end{center}
150     \end{figure}
151    
152    
153    
154     \begin{figure}[htb]
155     \begin{center}
156     {\color{red}
157 claudioc 1.1 \includegraphics[width=\linewidth]{ElFakeRatesJune1.pdf}
158 claudioc 1.3 \includegraphics[width=\linewidth]{eFReta.pdf}
159 claudioc 1.1 \caption{\label{fig:eleFR}The electron fake rates
160 claudioc 1.3 (V1,V2,V3) as a function of $P_T$ and $|\eta|$
161 claudioc 1.7 in the different jet samples. (Old plots updated below).}
162 claudioc 1.6 }
163 claudioc 1.1 \end{center}
164     \end{figure}
165    
166 claudioc 1.6
167    
168     \begin{figure}[htb]
169     \begin{center}
170     {\color{blue}
171     \includegraphics[width=0.4\linewidth,angle=90 ]{ElFakeRatesJuly7.pdf}
172     \includegraphics[width=0.4\linewidth,angle=90]{eFRetaJuly7.pdf}
173     \caption{\label{fig:eleFR2}The electron fake rates
174     (V1,V2,V3) as a function of $P_T$ and $|\eta|$
175     in the different jet samples.
176     Note that the spike removal has been added to the electron
177     selection since the earlier analysis. This is a very
178 claudioc 1.7 small effect. (New updated plots).}
179 claudioc 1.6 }
180     \end{center}
181     \end{figure}
182    
183    
184 claudioc 1.1 The fake rates are reasonably stable with respect to
185     jet trigger variations, within the $\approx 50\%$ which
186     we believe to be a realistic goal for the FR systematics.
187     There is some evidence for the V2 electron FR to be more stable than
188     the V1 and V3 versions. This is expected from earlier MC studies: the FO
189     V2 isolation requirement is the same as in the full electron selection,
190     and thus the dependence on the amount of jet activity near the electron
191     candidate is minimized.
192    
193     The FR binning
194     is quite coarse, because of the lack of statistics. This will improve
195     as we collect more data. In any case, the
196     FR does not appear to change very fast as a function of $P_T$.
197    
198 claudioc 1.4
199 claudioc 1.6 \clearpage
200    
201 claudioc 1.4 \subsection{Loosening the isolation requirement for the muon FO}
202     Loosening the isolation requirement for the muon FO would reduce the
203     muon FR. This is in general ``a good thing''\texttrademark.
204     However, the price one then pays is that the jet dependence of the
205     FR increases. This is illustrated in Figure~\ref{fig:FRlooseIso}.
206    
207     In the $P_T \approx 8$ GeV bin, the ratio of FR in the two extreme triggers
208     (HLT\_L1Jet6U and HLT\_Jet30U) increases from 1.6 (FO-Iso $<$ 0.4) to 2.0
209     (FO-Iso $<$ 0.6) to 2.4 (FO-Iso $<$ 0.8) to 2.9 (FO-Iso $<$ 1.0). Given this
210     behavior, for now we keep the FO isolation requirement to 0.4.
211    
212     \begin{figure}[htb]
213     \begin{center}
214     \includegraphics[width=0.7\linewidth,angle=90]{muonFR_differentIso.pdf}
215     \caption{\label{fig:FRlooseIso}Muon FR as a function of $P_T$ in different
216     trigger samples for different choices of the maximum isolation
217     requirement on the muon FO (0.4, 0.6, 0.8, 1.0).}
218     \end{center}
219     \end{figure}
220    
221    
222 claudioc 1.1 \subsection{Bias due to lepton triggers?}
223     Another possible bias is related to the fact that events used to
224     measure the FR are collected with jet triggers. On the other hand
225     the dilepton analysis is performed using events collected with
226     the photon and muon trigger, see Section~\ref{sec:trigger}.
227     If the FR depends on the firing of the muon/photon trigger,
228     the situation becomes more complicated and
229     we may be forced to define different FR depending on whether or
230     not the muon/photon trigger fired.
231    
232     To test this hypothesis, we select events collected with the
233     HLT\_L1\_Jet15U trigger; we then compare the FR computed
234     in the standard way (Figures~\ref{fig:muFR} and~\ref{fig:eleFR})
235     with the FR on the subset of leptons where the HLT\_Mu5 or
236     HLT\_Photon10\_L1R trigger fired\footnote{We made sure that the
237     trigger fired, and that the HLT object that fired the trigger was
238     matched in $\Delta R$ to the lepton candidate.}.
239     The results are displayed in Figures~\ref{fig:muFRtrg}
240     and~\ref{fig:eleFRtrg}.
241    
242     \begin{figure}[htb]
243     \begin{center}
244     \includegraphics[width=0.7\linewidth]{MuFakeRatesMu5June1.pdf}
245     \caption{\label{fig:muFRtrg}The muon fake rate in HLT\_L1\_Jet15U
246     as a function of $P_T$ with and without a requirement on the HLT\_Mu5
247     trigger.}
248     \end{center}
249     \end{figure}
250    
251    
252     \begin{figure}[htb]
253     \begin{center}
254     \includegraphics[width=\linewidth]{ElFakeRatesPhoton10June1.pdf}
255     \caption{\label{fig:eleFRtrg}The electron fake rates
256     (V1,V2,V3) in HLT\_L1\_Jet15U
257     as a function of $P_T$ with and without a requirement on the
258     HLT\_Photon10\_L1R trigger.}
259     \end{center}
260     \end{figure}
261    
262     The statistics are not very good, but the lepton trigger bias
263     does not seem to be a significant effect. We tentatively neglect it.
264    
265 claudioc 1.5 \clearpage