1 |
\section{Maximum Likelihood (ML) fit}
|
2 |
We extract signal yields and lifetimes from the selected samples using an unbinned extended
|
3 |
maximum-likelihood fit to the mass $M_{B_s}$ and proper decay length $c t$ of the reconstructed
|
4 |
candidates.
|
5 |
|
6 |
\subsection{Selection}
|
7 |
We change some requirements with respect to our cut-and-count analysis in
|
8 |
Sec.~\ref{sec:cutcount} on the event variables:
|
9 |
we remove the requirement on $\cos\alpha$ and the lifetime significance
|
10 |
$ct/\sigma(c t)$ since they present a bias to $c t$. Furthermore, we tighten
|
11 |
the requirement on the invariant $K^+ K^-$ mass to lie within 10~MeV
|
12 |
of the world average value and the $B_s$ invariant mass between $5.25$ and $5.65$ $GeV/c^2$.
|
13 |
This allows us to strongly suppress background events from $B_d\to J/\psi K^*$
|
14 |
that have been misreconstructed. The total selection efficiency is $\epsilon = 28.3\%$.
|
15 |
The expected composition of the final sample for the fit for an
|
16 |
integrated luminosity of 1~pb$^{-1}$ as derived from simulated event
|
17 |
samples is listed in Table~\ref{tab:mlpresel}.
|
18 |
|
19 |
\begin{table}[hpt]
|
20 |
\centering
|
21 |
\begin{tabular}{|l|c|c|c|c|}
|
22 |
\hline
|
23 |
& $B_s\rightarrow J/ \psi \phi$ & $b \to X$ & Prompt $J/ \psi$ & $pp\rightarrow \mu \mu X$\\ \hline
|
24 |
Total number of events & $970$ & $94 736$ & $920 247$ & $510216$ \\ \hline
|
25 |
\verb,L1DoubleMuOpen, & $191$ & $17514$ & $98854$ & $210566$ \\ \hline
|
26 |
Pre Kinem. fit & $121$ & $10266$ & $39362$ & $6597$\\
|
27 |
After Kinem. fit & $84$ & $1653$ & $3408$ & $1432$ \\
|
28 |
\hline
|
29 |
Vtx P(KK)$>$2 $\%$ & $76$ & $1008$ & $2406$ & $548$ \\
|
30 |
Kaon $p_T$ $>$ 0.7 GeV/c & $64$ & $397$ & $857$ & $243$ \\
|
31 |
$\Delta \phi$ mass $<$ 10 MeV & $54$ & $98$ & $213$ & $57$\\ \hline
|
32 |
\hline
|
33 |
\end{tabular}
|
34 |
\caption{\sl Sample composition in 1~pb$^{-1}$ for the Maximum Likelihood
|
35 |
fit as predicted from studies of simulated events.}
|
36 |
\label{tab:mlpresel}
|
37 |
\end{table}
|
38 |
|
39 |
The event distribution in the two variables $M_{B_s}$ and $ct$
|
40 |
for the different samples is presented in Fig.~\ref{fig:mlmb}
|
41 |
and Fig.~\ref{fig:mlct}, respectively.
|
42 |
%From a Kolmogorov-Smirnov test~\cite{kstest} we determine that
|
43 |
%the prompt $B$ and the QCD background are to 90\% compatible
|
44 |
%in each of the two variables. Therefore, we merge the two categories
|
45 |
%into one prompt background category.
|
46 |
|
47 |
\begin{figure}[h]
|
48 |
\begin{minipage}[b]{0.5\linewidth}
|
49 |
\centering
|
50 |
\includegraphics[scale=0.4]{figure/BsML.eps}
|
51 |
\caption{$B_s$ invariant mass distribution after the "ML" selection
|
52 |
for the signal and background categories.}
|
53 |
\label{fig:mlmb}
|
54 |
\end{minipage}
|
55 |
\hspace{1.cm}
|
56 |
\begin{minipage}[b]{0.5\linewidth}
|
57 |
\centering
|
58 |
\includegraphics[scale=0.4]{figure/ctauL.eps}
|
59 |
\caption{$B_s$ proper decay length distribution after the "ML"
|
60 |
selection for the signal and background categories.}
|
61 |
\label{fig:mlct}
|
62 |
\end{minipage}
|
63 |
\end{figure}
|
64 |
|
65 |
|
66 |
\subsection{Preparation}
|
67 |
Since we measure the correlations among the observables to be small in
|
68 |
the samples entering the fit, we take the probability density
|
69 |
function $\mathcal{P}_{i,c}^j$ for each event $j$ to be a product of the
|
70 |
PDFs for the separate observables. For each event hypothesis $i$
|
71 |
(signal, backgrounds), we define
|
72 |
\begin{equation}
|
73 |
\mathcal{P}_{i}^j =\mathcal{P}_i(M_{B_s};\alpha_i)
|
74 |
\cdot\mathcal{P}_i(c t,\sigma_{c t};\beta_i)\, ,
|
75 |
\end{equation}
|
76 |
with shape parameters $\alpha_i$ for $M_B$ and $\beta_i$ for $c t$,
|
77 |
evaluated separately for each of the components $i$.
|
78 |
The $\sigma_{c t}$ is the error on $c t$ for a given event.
|
79 |
We consider three separate components ($i$): signal, B background and prompt $J/ \psi$.
|
80 |
The extended likelihood function for the sample is given as:
|
81 |
\begin{equation}
|
82 |
\mbox{$\cal{L}$} = \exp \left( - \sum_{i} n_{i} \right) \prod_j
|
83 |
\left[ \sum_{i} n_{i} P_{i}^{j} \right]
|
84 |
\end{equation}
|
85 |
The yields $n_i$ and lifetime $\tau_i$ for each sample are then determined by minimizing
|
86 |
the quantity $-\ln \cal{L}$~\cite{roofit}.
|
87 |
|
88 |
% while keeping the PDF parameters $\alpha_i$ and $\beta_i$ fixed.
|
89 |
The analysis proceeds with the fit of the entire sample floating yields and the B proper decay
|
90 |
length from which we can extract the lifetime.
|
91 |
The PDFs are constructed from common functions (Gaussian, exponential, etc) and the parameters
|
92 |
are determined on the available data samples.
|
93 |
The guiding principle we follow in designing the PDFs is to use the simplest function with the
|
94 |
least number of parameters necessary to adequately describe the
|
95 |
observed distribution of events for $M_B$ and $c t$ for each component.
|
96 |
For the signal $B_s\rightarrow J/ \psi \phi$, we tried to parameterize the $B_s$ invariant mass
|
97 |
with two and three Gaussian distributions (Fig.~\ref{fig:sig3G} and Fig.~\ref{fig:sig2G}) but
|
98 |
we choose the three-Gaussians parameterization.
|
99 |
%We choose the three-Gaussians parameterization and we compare it with the $B_s$ invariant mass
|
100 |
%distribution at the generator level plotting the
|
101 |
%residual (Fig. 12 and Fig.13).
|
102 |
For the proper decay lenght $c t$, generated with value
|
103 |
$c\tau = 423$ ps, we fit an exponential convoluted with a gaussian with and without error correction
|
104 |
event by event (Fig.~\ref{fig:CtNo} and Fig.~\ref{fig:CtYes}).
|
105 |
For the final fit we will use the PDF with error correction event by event. In Table~\ref{tab:pdftable}
|
106 |
the summary of the PDFs used for each component.
|
107 |
|
108 |
\begin{figure}[!h]
|
109 |
\vspace{0.5cm}
|
110 |
\begin{minipage}[b]{0.5\linewidth}
|
111 |
\centering
|
112 |
\includegraphics[scale=0.35]{figure/sigBsM3G.eps}
|
113 |
\caption{$B_s$ invariant mass signal distribution fitted with three Gaussians.}
|
114 |
\label{fig:sig3G}
|
115 |
\end{minipage}
|
116 |
\hspace{1.cm}
|
117 |
\begin{minipage}[b]{0.5\linewidth}
|
118 |
\centering
|
119 |
\includegraphics[scale=0.35]{figure/sigBsM2G.eps}
|
120 |
\caption{$B_s$ invariant mass signal distribution fitted with two Gaussians.}
|
121 |
\label{fig:sig2G}
|
122 |
\end{minipage}
|
123 |
\end{figure}
|
124 |
|
125 |
\begin{figure}[!h]
|
126 |
\begin{minipage}[b]{0.5\linewidth}
|
127 |
\centering
|
128 |
\includegraphics[scale=0.35]{figure/sigCtau.eps}
|
129 |
\caption{$B_s$ proper decay length signal distribution without event by event correction.}
|
130 |
\label{fig:CtNo}
|
131 |
\end{minipage}
|
132 |
\hspace{1.cm}
|
133 |
\begin{minipage}[b]{0.5\linewidth}
|
134 |
\centering
|
135 |
\includegraphics[scale=0.35]{figure/sigCtauErr.eps}
|
136 |
\caption{$B_s$ proper decay length signal distribution with event by event correction.}
|
137 |
\label{fig:CtYes}
|
138 |
\end{minipage}
|
139 |
\end{figure}
|
140 |
|
141 |
\clearpage
|
142 |
|
143 |
For the B cocktail background we parameterize the $B_s$ invariant mass with a first degree Chebychev polynomial while a double Gaussian convoluted with
|
144 |
a double-sided exponential for the proper decay length.
|
145 |
|
146 |
\begin{figure}[!h]
|
147 |
\vspace{0.5cm}
|
148 |
\begin{minipage}[b]{0.5\linewidth}
|
149 |
\centering
|
150 |
\includegraphics[scale=0.35]{figure/BBsM.eps}
|
151 |
\caption{$B_s$ invariant mass for B background distribution.}
|
152 |
\label{fig:figure1}
|
153 |
\end{minipage}
|
154 |
\hspace{1.cm}
|
155 |
\begin{minipage}[b]{0.5\linewidth}
|
156 |
\centering
|
157 |
\includegraphics[scale=0.35]{figure/BCtau.eps}
|
158 |
\caption{$B_s$ proper decay length for B background distribution.}
|
159 |
\label{fig:figure2}
|
160 |
\end{minipage}
|
161 |
\vspace{0.5cm}
|
162 |
\end{figure}
|
163 |
|
164 |
For the prompt $J/ \psi$ background we parameterize the $B_s$ invariant mass with a first degree Chebychev polynomial while a double Gaussian convoluted with
|
165 |
a double-sided exponential for the proper decay length.
|
166 |
|
167 |
\begin{figure}[!h]
|
168 |
\vspace{0.5cm}
|
169 |
\begin{minipage}[b]{0.5\linewidth}
|
170 |
\centering
|
171 |
\includegraphics[scale=0.35]{figure/promptBsM.eps}
|
172 |
\caption{$B_s$ invariant mass for prompt background distribution.}
|
173 |
\label{fig:figure1}
|
174 |
\end{minipage}
|
175 |
\hspace{1.cm}
|
176 |
\begin{minipage}[b]{0.5\linewidth}
|
177 |
\centering
|
178 |
\includegraphics[scale=0.35]{figure/promptCtau.eps}
|
179 |
\caption{$B_s$ proper decay length for prompt background distribution.}
|
180 |
\label{fig:figure2}
|
181 |
\end{minipage}
|
182 |
\end{figure}
|
183 |
|
184 |
\begin{table}[htbp]
|
185 |
\centering
|
186 |
\vspace{0.25cm}
|
187 |
\begin{tabular}{ccccc}
|
188 |
\hline\hline
|
189 |
& \multicolumn{2}{c}{$M_B$} & \multicolumn{2}{c}{ct} \\
|
190 |
Components & Function & Parameters & Function & Parameters \\
|
191 |
\hline
|
192 |
Signal & $G_1+G_2+G_3$ & $\{ \mu_i,\sigma_i \}$ & $G_1 \otimes e^{-ct/ \lambda}$ & $\{ \mu_i,\sigma_i,\lambda \}$ \\
|
193 |
B background & Pol$1$ & $\{ \alpha \}$ & $( G_1+G_2 ) \otimes e^{\mp ct_{\pm}/ \lambda_{\pm}}$ & $\{ \mu_i,\sigma_i,\lambda_{\pm} \}$ \\
|
194 |
Prompt $J/ \psi$ & Pol$1$ & $\{ \alpha \}$ & $( G_1+G_2 ) \otimes e^{\mp ct_{\pm}/ \lambda_{\pm}}$ & $\{ \mu_i,\sigma_i,\lambda_{\pm} \}$ \\
|
195 |
\hline\hline
|
196 |
\end{tabular}
|
197 |
\caption{Summary of $M_B$ and $ct$ PFDs used in the fit. Where more than one Gaussian (G) is used in
|
198 |
a function we denote the separate means and widths with the notation $\mu_i$ and $\sigma_i$, where $i$ is an index that runs over the number
|
199 |
of Gaussians (either two or three). For $B$ background and prompt $J/ \psi$ we describe the long tails in the resolution function with two
|
200 |
separate exponential functions, one for $ct>0$ and the other for $ct<0$.}
|
201 |
\label{tab:pdftable}
|
202 |
\end{table}
|
203 |
|
204 |
|
205 |
\clearpage
|
206 |
|
207 |
\subsection{Fit Validation}
|
208 |
|
209 |
We have performed a series of detailed studies to demonstrate the accuracy and robustness of our fit strategy.
|
210 |
To prove that the fit configuration is unbiased, we have done 100 toy experiments generating the number of
|
211 |
expected signal and background yields according to an integrated luminosity of $3$ p$b^{-1}$
|
212 |
For each category we examined fitted value for the yields with their errors and the possible bias (``pull'' distributions).
|
213 |
We confirm that no biases are observed, and the errors are properly estimated from the fit (see. Table 8).
|
214 |
%The mean value for the negative logarithmic value of the likelihood function is $\ln \cal{L} $ $=14765\pm 64$.
|
215 |
|
216 |
\begin{table}[htbp]
|
217 |
\vspace{0.8cm}
|
218 |
\centering
|
219 |
\begin{tabular}{ccccc}
|
220 |
\hline\hline
|
221 |
Components & Generated yield & Fitted yield & Pull mean & Pull sigma \\
|
222 |
\hline
|
223 |
Signal & $161$ & $164\pm16$ & $0.13\pm0.09$ & $0.937\pm0.066$ \\
|
224 |
B background & $291$ & $296\pm64$ & $0.09\pm0.10$ & $1.022\pm0.072$ \\
|
225 |
Prompt $J/ \psi$ & $636$ & $634\pm64$& $-0.19\pm0.11$ & $1.130\pm0.080$ \\
|
226 |
\hline\hline
|
227 |
\end{tabular}
|
228 |
\caption{Summary table of 100 toy experiments with yields generated from the PDFs.}
|
229 |
\end{table}
|
230 |
|
231 |
\begin{figure}[!h!t]
|
232 |
\vspace{0.5cm}
|
233 |
\begin{minipage}[b]{0.5\linewidth}
|
234 |
\centering
|
235 |
\includegraphics[scale=0.37]{figure/toySigN.eps}
|
236 |
\caption{Signal yield distribution.}
|
237 |
\label{fig:figure1}
|
238 |
\end{minipage}
|
239 |
\hspace{0.5cm}
|
240 |
\begin{minipage}[b]{0.5\linewidth}
|
241 |
\centering
|
242 |
\includegraphics[scale=0.37]{figure/toySigNerr.eps}
|
243 |
\caption{Signal yield error distribution.}
|
244 |
\label{fig:figure2}
|
245 |
\end{minipage}
|
246 |
\end{figure}
|
247 |
|
248 |
\begin{figure}[!h!t]
|
249 |
\vspace{0.5cm}
|
250 |
\begin{minipage}[b]{0.5\linewidth}
|
251 |
\centering
|
252 |
\includegraphics[scale=0.37]{figure/sigPull.eps}
|
253 |
\caption{Signal yield distribution.}
|
254 |
\label{fig:figure1}
|
255 |
\end{minipage}
|
256 |
\hspace{0.5cm}
|
257 |
\begin{minipage}[b]{0.5\linewidth}
|
258 |
\centering
|
259 |
\includegraphics[scale=0.37]{figure/toyLnL.eps}
|
260 |
\caption{Negative logarithmic likelihood distribution.}
|
261 |
\label{fig:figure2}
|
262 |
\end{minipage}
|
263 |
\end{figure}
|
264 |
|
265 |
|
266 |
|
267 |
\clearpage
|
268 |
|
269 |
\begin{figure}[!h!t]
|
270 |
\vspace{0.5cm}
|
271 |
\begin{minipage}[b]{0.5\linewidth}
|
272 |
\centering
|
273 |
\includegraphics[scale=0.37]{figure/toyBbkgN.eps}
|
274 |
\caption{B background yield distribution.}
|
275 |
\label{fig:figure1}
|
276 |
\end{minipage}
|
277 |
\hspace{0.5cm}
|
278 |
\begin{minipage}[b]{0.5\linewidth}
|
279 |
\centering
|
280 |
\includegraphics[scale=0.37]{figure/toyBbkgNerr.eps}
|
281 |
\caption{B background yield error distribution.}
|
282 |
\label{fig:figure2}
|
283 |
\end{minipage}
|
284 |
\end{figure}
|
285 |
|
286 |
\begin{figure}[!h!t]
|
287 |
\vspace{0.5cm}
|
288 |
\begin{minipage}[b]{0.5\linewidth}
|
289 |
\centering
|
290 |
\includegraphics[scale=0.37]{figure/toyPrN.eps}
|
291 |
\caption{Prompt background yield distribution.}
|
292 |
\label{fig:figure1}
|
293 |
\end{minipage}
|
294 |
\hspace{0.5cm}
|
295 |
\begin{minipage}[b]{0.5\linewidth}
|
296 |
\centering
|
297 |
\includegraphics[scale=0.37]{figure/toyPrNerr.eps}
|
298 |
\caption{Prompt background yield error distribution.}
|
299 |
\label{fig:figure2}
|
300 |
\end{minipage}
|
301 |
\end{figure}
|
302 |
|
303 |
\begin{figure}[!h!t]
|
304 |
\vspace{0.5cm}
|
305 |
\begin{minipage}[b]{0.5\linewidth}
|
306 |
\centering
|
307 |
\includegraphics[scale=0.37]{figure/BbkgPull.eps}
|
308 |
\caption{B background pull distribution.}
|
309 |
\label{fig:figure1}
|
310 |
\end{minipage}
|
311 |
\hspace{0.5cm}
|
312 |
\begin{minipage}[b]{0.5\linewidth}
|
313 |
\centering
|
314 |
\includegraphics[scale=0.37]{figure/promptPull.eps}
|
315 |
\caption{Prompt background pull distribution.}
|
316 |
\label{fig:figure2}
|
317 |
\end{minipage}
|
318 |
\end{figure}
|
319 |
|
320 |
\clearpage
|
321 |
|
322 |
We repeat the experiment fitting $100$ independent MC cocktail samples with the number of expected events for each category.
|
323 |
In the fit we let free to float the yields, the proper decay length for $B_s\rightarrow J/ \psi \phi$, the bias and the scaling factor of
|
324 |
the signal resolution function. This test has been performed with statistics for three different integrated
|
325 |
luminosity ($3$ p$b^{-1}$, $1$ p$b^{-1}$ and $0.5$ p$b^{-1}$).
|
326 |
|
327 |
\begin{table}[htbp]
|
328 |
\centering
|
329 |
\vspace{0.3cm}
|
330 |
\begin{tabular}{ccc}
|
331 |
\hline\hline
|
332 |
Components & Expected & Fit value \\
|
333 |
\hline
|
334 |
Signal & $161$ & $189\pm19$ \\
|
335 |
B background & $291$ & $245\pm63$ \\
|
336 |
Prompt $J/ \psi$ & $636$ & $639\pm62$ \\
|
337 |
$\lambda$ ($\mu$m) & $423$ & $425\pm38$ \\
|
338 |
Bias & & $-1.48\pm0.35$ \\
|
339 |
Scaling factor & & $1.08\pm0.28$ \\
|
340 |
\hline\hline
|
341 |
\end{tabular}
|
342 |
\caption{Summary table for experiments with integrated luminosity of $3$ p$b^{-1}$.}
|
343 |
\end{table}
|
344 |
|
345 |
\begin{table}[htbp]
|
346 |
\centering
|
347 |
\vspace{0.3cm}
|
348 |
\begin{tabular}{ccc}
|
349 |
\hline\hline
|
350 |
Components & Expected & Fit value \\
|
351 |
\hline
|
352 |
Signal & $54$ & $65\pm11$ \\
|
353 |
B background & $97$ & $82\pm36$ \\
|
354 |
Prompt $J/ \psi$ & $212$ & $215\pm35$ \\
|
355 |
$\lambda$ ($\mu$m) & $423$ & $429\pm56$ \\
|
356 |
Bias & & $-1.53\pm0.64$ \\
|
357 |
Scaling factor & & $1.25\pm0.46$ \\
|
358 |
\hline\hline
|
359 |
\end{tabular}
|
360 |
\caption{Summary table for experiments with integrated luminosity of $1$ p$b^{-1}$.}
|
361 |
\end{table}
|
362 |
|
363 |
\begin{table}[htbp]
|
364 |
\centering
|
365 |
\vspace{0.3cm}
|
366 |
\begin{tabular}{ccc}
|
367 |
\hline\hline
|
368 |
Components & Expected & Fit value \\
|
369 |
\hline
|
370 |
Signal & $27$ & $34\pm7$ \\
|
371 |
B background & $49$ & $42\pm26$ \\
|
372 |
Prompt $J/ \psi$ & $106$ & $110\pm25$ \\
|
373 |
$\lambda$ ($\mu$m) & $423$ & $401\pm80$ \\
|
374 |
Bias & & $-1.65\pm1.18$ \\
|
375 |
Scaling factor & & $1.72\pm0.81$ \\
|
376 |
\hline\hline
|
377 |
\end{tabular}
|
378 |
\caption{Summary table for experiments with integrated luminosity of $0.5$ p$b^{-1}$.}
|
379 |
\end{table}
|
380 |
|
381 |
It is generally expected that the real backgrounds encountered in collision data could be much higher than predicted by the default (untuned) CMS full simulation samples.
|
382 |
|
383 |
\clearpage
|