ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/codeBS/CMSnote/fit.tex
Revision: 1.1
Committed: Wed May 5 14:31:43 2010 UTC (14 years, 11 months ago) by cerizza
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Log Message:
note added

File Contents

# Content
1 \section{Maximum Likelihood (ML) fit}
2 We extract signal yields and lifetimes from the selected samples using an unbinned extended
3 maximum-likelihood fit to the mass $M_{B_s}$ and proper decay length $c t$ of the reconstructed
4 candidates.
5
6 \subsection{Selection}
7 We change some requirements with respect to our cut-and-count analysis in
8 Sec.~\ref{sec:cutcount} on the event variables:
9 we remove the requirement on $\cos\alpha$ and the lifetime significance
10 $ct/\sigma(c t)$ since they present a bias to $c t$. Furthermore, we tighten
11 the requirement on the invariant $K^+ K^-$ mass to lie within 10~MeV
12 of the world average value and the $B_s$ invariant mass between $5.25$ and $5.65$ $GeV/c^2$.
13 This allows us to strongly suppress background events from $B_d\to J/\psi K^*$
14 that have been misreconstructed. The total selection efficiency is $\epsilon = 28.3\%$.
15 The expected composition of the final sample for the fit for an
16 integrated luminosity of 1~pb$^{-1}$ as derived from simulated event
17 samples is listed in Table~\ref{tab:mlpresel}.
18
19 \begin{table}[hpt]
20 \centering
21 \begin{tabular}{|l|c|c|c|c|}
22 \hline
23 & $B_s\rightarrow J/ \psi \phi$ & $b \to X$ & Prompt $J/ \psi$ & $pp\rightarrow \mu \mu X$\\ \hline
24 Total number of events & $970$ & $94 736$ & $920 247$ & $510216$ \\ \hline
25 \verb,L1DoubleMuOpen, & $191$ & $17514$ & $98854$ & $210566$ \\ \hline
26 Pre Kinem. fit & $121$ & $10266$ & $39362$ & $6597$\\
27 After Kinem. fit & $84$ & $1653$ & $3408$ & $1432$ \\
28 \hline
29 Vtx P(KK)$>$2 $\%$ & $76$ & $1008$ & $2406$ & $548$ \\
30 Kaon $p_T$ $>$ 0.7 GeV/c & $64$ & $397$ & $857$ & $243$ \\
31 $\Delta \phi$ mass $<$ 10 MeV & $54$ & $98$ & $213$ & $57$\\ \hline
32 \hline
33 \end{tabular}
34 \caption{\sl Sample composition in 1~pb$^{-1}$ for the Maximum Likelihood
35 fit as predicted from studies of simulated events.}
36 \label{tab:mlpresel}
37 \end{table}
38
39 The event distribution in the two variables $M_{B_s}$ and $ct$
40 for the different samples is presented in Fig.~\ref{fig:mlmb}
41 and Fig.~\ref{fig:mlct}, respectively.
42 %From a Kolmogorov-Smirnov test~\cite{kstest} we determine that
43 %the prompt $B$ and the QCD background are to 90\% compatible
44 %in each of the two variables. Therefore, we merge the two categories
45 %into one prompt background category.
46
47 \begin{figure}[h]
48 \begin{minipage}[b]{0.5\linewidth}
49 \centering
50 \includegraphics[scale=0.4]{figure/BsML.eps}
51 \caption{$B_s$ invariant mass distribution after the "ML" selection
52 for the signal and background categories.}
53 \label{fig:mlmb}
54 \end{minipage}
55 \hspace{1.cm}
56 \begin{minipage}[b]{0.5\linewidth}
57 \centering
58 \includegraphics[scale=0.4]{figure/ctauL.eps}
59 \caption{$B_s$ proper decay length distribution after the "ML"
60 selection for the signal and background categories.}
61 \label{fig:mlct}
62 \end{minipage}
63 \end{figure}
64
65
66 \subsection{Preparation}
67 Since we measure the correlations among the observables to be small in
68 the samples entering the fit, we take the probability density
69 function $\mathcal{P}_{i,c}^j$ for each event $j$ to be a product of the
70 PDFs for the separate observables. For each event hypothesis $i$
71 (signal, backgrounds), we define
72 \begin{equation}
73 \mathcal{P}_{i}^j =\mathcal{P}_i(M_{B_s};\alpha_i)
74 \cdot\mathcal{P}_i(c t,\sigma_{c t};\beta_i)\, ,
75 \end{equation}
76 with shape parameters $\alpha_i$ for $M_B$ and $\beta_i$ for $c t$,
77 evaluated separately for each of the components $i$.
78 The $\sigma_{c t}$ is the error on $c t$ for a given event.
79 We consider three separate components ($i$): signal, B background and prompt $J/ \psi$.
80 The extended likelihood function for the sample is given as:
81 \begin{equation}
82 \mbox{$\cal{L}$} = \exp \left( - \sum_{i} n_{i} \right) \prod_j
83 \left[ \sum_{i} n_{i} P_{i}^{j} \right]
84 \end{equation}
85 The yields $n_i$ and lifetime $\tau_i$ for each sample are then determined by minimizing
86 the quantity $-\ln \cal{L}$~\cite{roofit}.
87
88 % while keeping the PDF parameters $\alpha_i$ and $\beta_i$ fixed.
89 The analysis proceeds with the fit of the entire sample floating yields and the B proper decay
90 length from which we can extract the lifetime.
91 The PDFs are constructed from common functions (Gaussian, exponential, etc) and the parameters
92 are determined on the available data samples.
93 The guiding principle we follow in designing the PDFs is to use the simplest function with the
94 least number of parameters necessary to adequately describe the
95 observed distribution of events for $M_B$ and $c t$ for each component.
96 For the signal $B_s\rightarrow J/ \psi \phi$, we tried to parameterize the $B_s$ invariant mass
97 with two and three Gaussian distributions (Fig.~\ref{fig:sig3G} and Fig.~\ref{fig:sig2G}) but
98 we choose the three-Gaussians parameterization.
99 %We choose the three-Gaussians parameterization and we compare it with the $B_s$ invariant mass
100 %distribution at the generator level plotting the
101 %residual (Fig. 12 and Fig.13).
102 For the proper decay lenght $c t$, generated with value
103 $c\tau = 423$ ps, we fit an exponential convoluted with a gaussian with and without error correction
104 event by event (Fig.~\ref{fig:CtNo} and Fig.~\ref{fig:CtYes}).
105 For the final fit we will use the PDF with error correction event by event. In Table~\ref{tab:pdftable}
106 the summary of the PDFs used for each component.
107
108 \begin{figure}[!h]
109 \vspace{0.5cm}
110 \begin{minipage}[b]{0.5\linewidth}
111 \centering
112 \includegraphics[scale=0.35]{figure/sigBsM3G.eps}
113 \caption{$B_s$ invariant mass signal distribution fitted with three Gaussians.}
114 \label{fig:sig3G}
115 \end{minipage}
116 \hspace{1.cm}
117 \begin{minipage}[b]{0.5\linewidth}
118 \centering
119 \includegraphics[scale=0.35]{figure/sigBsM2G.eps}
120 \caption{$B_s$ invariant mass signal distribution fitted with two Gaussians.}
121 \label{fig:sig2G}
122 \end{minipage}
123 \end{figure}
124
125 \begin{figure}[!h]
126 \begin{minipage}[b]{0.5\linewidth}
127 \centering
128 \includegraphics[scale=0.35]{figure/sigCtau.eps}
129 \caption{$B_s$ proper decay length signal distribution without event by event correction.}
130 \label{fig:CtNo}
131 \end{minipage}
132 \hspace{1.cm}
133 \begin{minipage}[b]{0.5\linewidth}
134 \centering
135 \includegraphics[scale=0.35]{figure/sigCtauErr.eps}
136 \caption{$B_s$ proper decay length signal distribution with event by event correction.}
137 \label{fig:CtYes}
138 \end{minipage}
139 \end{figure}
140
141 \clearpage
142
143 For the B cocktail background we parameterize the $B_s$ invariant mass with a first degree Chebychev polynomial while a double Gaussian convoluted with
144 a double-sided exponential for the proper decay length.
145
146 \begin{figure}[!h]
147 \vspace{0.5cm}
148 \begin{minipage}[b]{0.5\linewidth}
149 \centering
150 \includegraphics[scale=0.35]{figure/BBsM.eps}
151 \caption{$B_s$ invariant mass for B background distribution.}
152 \label{fig:figure1}
153 \end{minipage}
154 \hspace{1.cm}
155 \begin{minipage}[b]{0.5\linewidth}
156 \centering
157 \includegraphics[scale=0.35]{figure/BCtau.eps}
158 \caption{$B_s$ proper decay length for B background distribution.}
159 \label{fig:figure2}
160 \end{minipage}
161 \vspace{0.5cm}
162 \end{figure}
163
164 For the prompt $J/ \psi$ background we parameterize the $B_s$ invariant mass with a first degree Chebychev polynomial while a double Gaussian convoluted with
165 a double-sided exponential for the proper decay length.
166
167 \begin{figure}[!h]
168 \vspace{0.5cm}
169 \begin{minipage}[b]{0.5\linewidth}
170 \centering
171 \includegraphics[scale=0.35]{figure/promptBsM.eps}
172 \caption{$B_s$ invariant mass for prompt background distribution.}
173 \label{fig:figure1}
174 \end{minipage}
175 \hspace{1.cm}
176 \begin{minipage}[b]{0.5\linewidth}
177 \centering
178 \includegraphics[scale=0.35]{figure/promptCtau.eps}
179 \caption{$B_s$ proper decay length for prompt background distribution.}
180 \label{fig:figure2}
181 \end{minipage}
182 \end{figure}
183
184 \begin{table}[htbp]
185 \centering
186 \vspace{0.25cm}
187 \begin{tabular}{ccccc}
188 \hline\hline
189 & \multicolumn{2}{c}{$M_B$} & \multicolumn{2}{c}{ct} \\
190 Components & Function & Parameters & Function & Parameters \\
191 \hline
192 Signal & $G_1+G_2+G_3$ & $\{ \mu_i,\sigma_i \}$ & $G_1 \otimes e^{-ct/ \lambda}$ & $\{ \mu_i,\sigma_i,\lambda \}$ \\
193 B background & Pol$1$ & $\{ \alpha \}$ & $( G_1+G_2 ) \otimes e^{\mp ct_{\pm}/ \lambda_{\pm}}$ & $\{ \mu_i,\sigma_i,\lambda_{\pm} \}$ \\
194 Prompt $J/ \psi$ & Pol$1$ & $\{ \alpha \}$ & $( G_1+G_2 ) \otimes e^{\mp ct_{\pm}/ \lambda_{\pm}}$ & $\{ \mu_i,\sigma_i,\lambda_{\pm} \}$ \\
195 \hline\hline
196 \end{tabular}
197 \caption{Summary of $M_B$ and $ct$ PFDs used in the fit. Where more than one Gaussian (G) is used in
198 a function we denote the separate means and widths with the notation $\mu_i$ and $\sigma_i$, where $i$ is an index that runs over the number
199 of Gaussians (either two or three). For $B$ background and prompt $J/ \psi$ we describe the long tails in the resolution function with two
200 separate exponential functions, one for $ct>0$ and the other for $ct<0$.}
201 \label{tab:pdftable}
202 \end{table}
203
204
205 \clearpage
206
207 \subsection{Fit Validation}
208
209 We have performed a series of detailed studies to demonstrate the accuracy and robustness of our fit strategy.
210 To prove that the fit configuration is unbiased, we have done 100 toy experiments generating the number of
211 expected signal and background yields according to an integrated luminosity of $3$ p$b^{-1}$
212 For each category we examined fitted value for the yields with their errors and the possible bias (``pull'' distributions).
213 We confirm that no biases are observed, and the errors are properly estimated from the fit (see. Table 8).
214 %The mean value for the negative logarithmic value of the likelihood function is $\ln \cal{L} $ $=14765\pm 64$.
215
216 \begin{table}[htbp]
217 \vspace{0.8cm}
218 \centering
219 \begin{tabular}{ccccc}
220 \hline\hline
221 Components & Generated yield & Fitted yield & Pull mean & Pull sigma \\
222 \hline
223 Signal & $161$ & $164\pm16$ & $0.13\pm0.09$ & $0.937\pm0.066$ \\
224 B background & $291$ & $296\pm64$ & $0.09\pm0.10$ & $1.022\pm0.072$ \\
225 Prompt $J/ \psi$ & $636$ & $634\pm64$& $-0.19\pm0.11$ & $1.130\pm0.080$ \\
226 \hline\hline
227 \end{tabular}
228 \caption{Summary table of 100 toy experiments with yields generated from the PDFs.}
229 \end{table}
230
231 \begin{figure}[!h!t]
232 \vspace{0.5cm}
233 \begin{minipage}[b]{0.5\linewidth}
234 \centering
235 \includegraphics[scale=0.37]{figure/toySigN.eps}
236 \caption{Signal yield distribution.}
237 \label{fig:figure1}
238 \end{minipage}
239 \hspace{0.5cm}
240 \begin{minipage}[b]{0.5\linewidth}
241 \centering
242 \includegraphics[scale=0.37]{figure/toySigNerr.eps}
243 \caption{Signal yield error distribution.}
244 \label{fig:figure2}
245 \end{minipage}
246 \end{figure}
247
248 \begin{figure}[!h!t]
249 \vspace{0.5cm}
250 \begin{minipage}[b]{0.5\linewidth}
251 \centering
252 \includegraphics[scale=0.37]{figure/sigPull.eps}
253 \caption{Signal yield distribution.}
254 \label{fig:figure1}
255 \end{minipage}
256 \hspace{0.5cm}
257 \begin{minipage}[b]{0.5\linewidth}
258 \centering
259 \includegraphics[scale=0.37]{figure/toyLnL.eps}
260 \caption{Negative logarithmic likelihood distribution.}
261 \label{fig:figure2}
262 \end{minipage}
263 \end{figure}
264
265
266
267 \clearpage
268
269 \begin{figure}[!h!t]
270 \vspace{0.5cm}
271 \begin{minipage}[b]{0.5\linewidth}
272 \centering
273 \includegraphics[scale=0.37]{figure/toyBbkgN.eps}
274 \caption{B background yield distribution.}
275 \label{fig:figure1}
276 \end{minipage}
277 \hspace{0.5cm}
278 \begin{minipage}[b]{0.5\linewidth}
279 \centering
280 \includegraphics[scale=0.37]{figure/toyBbkgNerr.eps}
281 \caption{B background yield error distribution.}
282 \label{fig:figure2}
283 \end{minipage}
284 \end{figure}
285
286 \begin{figure}[!h!t]
287 \vspace{0.5cm}
288 \begin{minipage}[b]{0.5\linewidth}
289 \centering
290 \includegraphics[scale=0.37]{figure/toyPrN.eps}
291 \caption{Prompt background yield distribution.}
292 \label{fig:figure1}
293 \end{minipage}
294 \hspace{0.5cm}
295 \begin{minipage}[b]{0.5\linewidth}
296 \centering
297 \includegraphics[scale=0.37]{figure/toyPrNerr.eps}
298 \caption{Prompt background yield error distribution.}
299 \label{fig:figure2}
300 \end{minipage}
301 \end{figure}
302
303 \begin{figure}[!h!t]
304 \vspace{0.5cm}
305 \begin{minipage}[b]{0.5\linewidth}
306 \centering
307 \includegraphics[scale=0.37]{figure/BbkgPull.eps}
308 \caption{B background pull distribution.}
309 \label{fig:figure1}
310 \end{minipage}
311 \hspace{0.5cm}
312 \begin{minipage}[b]{0.5\linewidth}
313 \centering
314 \includegraphics[scale=0.37]{figure/promptPull.eps}
315 \caption{Prompt background pull distribution.}
316 \label{fig:figure2}
317 \end{minipage}
318 \end{figure}
319
320 \clearpage
321
322 We repeat the experiment fitting $100$ independent MC cocktail samples with the number of expected events for each category.
323 In the fit we let free to float the yields, the proper decay length for $B_s\rightarrow J/ \psi \phi$, the bias and the scaling factor of
324 the signal resolution function. This test has been performed with statistics for three different integrated
325 luminosity ($3$ p$b^{-1}$, $1$ p$b^{-1}$ and $0.5$ p$b^{-1}$).
326
327 \begin{table}[htbp]
328 \centering
329 \vspace{0.3cm}
330 \begin{tabular}{ccc}
331 \hline\hline
332 Components & Expected & Fit value \\
333 \hline
334 Signal & $161$ & $189\pm19$ \\
335 B background & $291$ & $245\pm63$ \\
336 Prompt $J/ \psi$ & $636$ & $639\pm62$ \\
337 $\lambda$ ($\mu$m) & $423$ & $425\pm38$ \\
338 Bias & & $-1.48\pm0.35$ \\
339 Scaling factor & & $1.08\pm0.28$ \\
340 \hline\hline
341 \end{tabular}
342 \caption{Summary table for experiments with integrated luminosity of $3$ p$b^{-1}$.}
343 \end{table}
344
345 \begin{table}[htbp]
346 \centering
347 \vspace{0.3cm}
348 \begin{tabular}{ccc}
349 \hline\hline
350 Components & Expected & Fit value \\
351 \hline
352 Signal & $54$ & $65\pm11$ \\
353 B background & $97$ & $82\pm36$ \\
354 Prompt $J/ \psi$ & $212$ & $215\pm35$ \\
355 $\lambda$ ($\mu$m) & $423$ & $429\pm56$ \\
356 Bias & & $-1.53\pm0.64$ \\
357 Scaling factor & & $1.25\pm0.46$ \\
358 \hline\hline
359 \end{tabular}
360 \caption{Summary table for experiments with integrated luminosity of $1$ p$b^{-1}$.}
361 \end{table}
362
363 \begin{table}[htbp]
364 \centering
365 \vspace{0.3cm}
366 \begin{tabular}{ccc}
367 \hline\hline
368 Components & Expected & Fit value \\
369 \hline
370 Signal & $27$ & $34\pm7$ \\
371 B background & $49$ & $42\pm26$ \\
372 Prompt $J/ \psi$ & $106$ & $110\pm25$ \\
373 $\lambda$ ($\mu$m) & $423$ & $401\pm80$ \\
374 Bias & & $-1.65\pm1.18$ \\
375 Scaling factor & & $1.72\pm0.81$ \\
376 \hline\hline
377 \end{tabular}
378 \caption{Summary table for experiments with integrated luminosity of $0.5$ p$b^{-1}$.}
379 \end{table}
380
381 It is generally expected that the real backgrounds encountered in collision data could be much higher than predicted by the default (untuned) CMS full simulation samples.
382
383 \clearpage