1 |
#include "TROOT.h"
|
2 |
#include "TSystem.h"
|
3 |
#include "TF1.h"
|
4 |
#include "TH1.h"
|
5 |
#include "TH2.h"
|
6 |
#include "TProfile.h"
|
7 |
#include "TCanvas.h"
|
8 |
#include "TRandom.h"
|
9 |
#include "TStyle.h"
|
10 |
#include "TObjArray.h"
|
11 |
#include "TGraph.h"
|
12 |
#include "TMath.h"
|
13 |
#include "TSpline.h"
|
14 |
|
15 |
#include <iostream>
|
16 |
#include <vector>
|
17 |
#include <string>
|
18 |
|
19 |
#include "external.h"
|
20 |
|
21 |
using namespace::std;
|
22 |
|
23 |
////////////////////////////////////////////////////////////
|
24 |
class TDataPoint{
|
25 |
|
26 |
private:
|
27 |
double weight;
|
28 |
double weight_orig;
|
29 |
double truth;
|
30 |
double meas;
|
31 |
double error;
|
32 |
|
33 |
public:
|
34 |
double GetTruth(){return truth;};
|
35 |
double GetMeas(){return meas;};
|
36 |
double GetError(){return error;};
|
37 |
double GetWeight(){return weight;};
|
38 |
double GetWeight_orig(){return weight_orig;};
|
39 |
void SetWeight(double w){weight=w;};
|
40 |
void SetWeight_orig(double w){weight_orig=w;};
|
41 |
|
42 |
//constructor
|
43 |
TDataPoint(double t, double m, double e, double w){
|
44 |
weight = w;
|
45 |
weight_orig = w;
|
46 |
truth = t;
|
47 |
meas = m;
|
48 |
error = e;
|
49 |
};
|
50 |
|
51 |
//destructor
|
52 |
~TDataPoint(){};
|
53 |
|
54 |
};
|
55 |
////////////////////////////////////////////////////////////
|
56 |
|
57 |
////////////////////////////////////////////////////////////
|
58 |
class TData{
|
59 |
|
60 |
private:
|
61 |
int Nevts;
|
62 |
double minX, maxX;
|
63 |
double minY, maxY;
|
64 |
double dY;
|
65 |
vector<TDataPoint> data;
|
66 |
vector<double> sp;
|
67 |
|
68 |
//----------------------------------------------------------
|
69 |
double chi2(vector<double>* PAR){
|
70 |
|
71 |
TGraph cgr(sp.size(), &sp.front(), &PAR->front());
|
72 |
TSpline3 *cspl = new TSpline3("cspl",&cgr);
|
73 |
double x2 = 0.;
|
74 |
for (vector<TDataPoint>::iterator i = data.begin(); i < data.end(); ++i){
|
75 |
double mess=i->GetMeas();
|
76 |
double truth=i->GetTruth();
|
77 |
/*
|
78 |
double c = calib(mess,cspl);
|
79 |
double dc = dcalib(mess,cspl);
|
80 |
double d = c * mess - truth;
|
81 |
double e = dc * i->GetError();
|
82 |
*/
|
83 |
/*
|
84 |
double c = calib(truth,cspl);
|
85 |
double d = c * mess - truth;
|
86 |
double e = c * i->GetError();
|
87 |
*/
|
88 |
double cmess = calib(mess,cspl);
|
89 |
double cold = 1;
|
90 |
double cinv = calibinv(truth,cmess,cold,cspl);
|
91 |
double d = mess - truth/cinv;
|
92 |
double e = i->GetError();
|
93 |
x2 += i->GetWeight()*pow(d/e, 2);
|
94 |
}
|
95 |
return x2;
|
96 |
}
|
97 |
//----------------------------------------------------------
|
98 |
|
99 |
//----------------------------------------------------------
|
100 |
double calib(double &x, TSpline3* calibSpline){
|
101 |
return calibSpline->Eval(x);
|
102 |
}
|
103 |
//----------------------------------------------------------
|
104 |
|
105 |
//----------------------------------------------------------
|
106 |
//might be usefull if calibration constant is defined as function of truth
|
107 |
double calibinv(double& x, double &cmess, double &cold, TSpline3* calibSpline){
|
108 |
double cinv = calibSpline->Eval(x/cmess);
|
109 |
//cout<<"cold: "<<cold<<" cnew: "<<cinv<<endl;
|
110 |
double delta = fabs((cinv-cold)/cold);
|
111 |
if (delta<1.e-4){
|
112 |
return cinv;
|
113 |
} else {
|
114 |
return calibSpline->Eval(x/calibinv(x,cmess,cinv,calibSpline));
|
115 |
}
|
116 |
}
|
117 |
//----------------------------------------------------------
|
118 |
|
119 |
//----------------------------------------------------------
|
120 |
double dcalib(double &mess, TSpline3* calibSpline){
|
121 |
double eps=1.;
|
122 |
double dc=((mess+eps)*calibSpline->Eval(mess+eps)-
|
123 |
(mess-eps)*calibSpline->Eval(mess-eps))/2./eps;
|
124 |
return dc;
|
125 |
}
|
126 |
//----------------------------------------------------------
|
127 |
|
128 |
//----------------------------------------------------------
|
129 |
//error parametrization, width of measured distribution
|
130 |
double error(double x){
|
131 |
double error = -1;
|
132 |
if ( x >= 0 ) error = 1.25*sqrt(x);
|
133 |
return error;
|
134 |
}
|
135 |
//----------------------------------------------------------
|
136 |
|
137 |
//----------------------------------------------------------
|
138 |
//reweight events to have flat truth distribution
|
139 |
void FlattenSpectra(){
|
140 |
|
141 |
TH1F* hist1 = new TH1F("truth non weighted","True distribution of measurement", 50, 0, 1000);
|
142 |
TH1F* hist2 = new TH1F("truth weighted","Weighted true distribution of measurement", 50, 0, 1000);
|
143 |
TH1F* weights = new TH1F("weights","Weights to flatten distribution", 50, 0, 1000);
|
144 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
145 |
hist1->Fill(i->GetTruth(),i->GetWeight());
|
146 |
}
|
147 |
double Integral1=hist1->Integral();
|
148 |
for (int i=0; i<hist1->GetNbinsX(); ++i){
|
149 |
weights->SetBinContent(i,1./hist1->GetBinContent(i));
|
150 |
}
|
151 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
152 |
double w=weights->GetBinContent(hist1->FindBin(i->GetTruth()));
|
153 |
hist2->Fill(i->GetTruth(),w);
|
154 |
}
|
155 |
double Integral2=hist2->Integral();
|
156 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
157 |
double w=weights->GetBinContent(hist1->FindBin(i->GetTruth()));
|
158 |
w*=i->GetWeight();
|
159 |
w*=Integral1/Integral2;
|
160 |
i->SetWeight(w);
|
161 |
i->SetWeight_orig(w);
|
162 |
}
|
163 |
}
|
164 |
//----------------------------------------------------------
|
165 |
|
166 |
//----------------------------------------------------------
|
167 |
//reweight spectra to correct for energy dependent resolution
|
168 |
void ResolutionReweight(bool logscale = false, bool outlier=false, int sigmamax=3){
|
169 |
|
170 |
cout<<"Events at start of ResolutionReweight: "<<data.size()<<endl;
|
171 |
|
172 |
int Nbins=49;
|
173 |
int minEntries=200;
|
174 |
vector<TDataPoint> dataCut;
|
175 |
vector<double> mean;
|
176 |
vector<double> sigma;
|
177 |
|
178 |
double d;
|
179 |
if (logscale){
|
180 |
d=(log(maxY)-log(minY))/Nbins;
|
181 |
} else {
|
182 |
d=(maxY-minY)/Nbins;
|
183 |
}
|
184 |
|
185 |
//book histos
|
186 |
TH1F* hist[Nbins];
|
187 |
TF1* f[Nbins];
|
188 |
for (int n=0; n<Nbins; ++n){
|
189 |
char hname[100];
|
190 |
sprintf(hname,"hr%i",n);
|
191 |
hist[n] = new TH1F(hname,"Truth for MeasBin", 1000, minX, maxX);
|
192 |
hist[n]->Sumw2();
|
193 |
}
|
194 |
|
195 |
//Fill histos
|
196 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
197 |
int n;
|
198 |
if (logscale){
|
199 |
n=(int)(Nbins*(log(i->GetMeas())-log(minY))/(log(maxY)-log(minY)));
|
200 |
if (n>=Nbins) n=Nbins-1;
|
201 |
} else {
|
202 |
n=(int)(Nbins*(i->GetMeas()-minY)/d);
|
203 |
if (n>=Nbins) n=Nbins-1;
|
204 |
};
|
205 |
hist[n]->Fill(i->GetTruth(),i->GetWeight());
|
206 |
}
|
207 |
|
208 |
//Fit histos
|
209 |
for (int n=0; n<Nbins; ++n){
|
210 |
cout<<n<<" of "<<Nbins<<endl;
|
211 |
if (hist[n]->GetEntries()<minEntries){
|
212 |
mean.push_back(0);
|
213 |
sigma.push_back(0);
|
214 |
continue;
|
215 |
}
|
216 |
char fname[100];
|
217 |
sprintf(fname,"fr%i",n);
|
218 |
f[n] = new TF1(fname,"gausn",minX,maxX);
|
219 |
//use a guess for starting values
|
220 |
f[n]->SetParameters(hist[n]->Integral("width"),hist[n]->GetMean(),hist[n]->GetRMS());
|
221 |
hist[n]->Fit(fname,"ILLRQN");
|
222 |
double Mean=f[n]->GetParameter(1);
|
223 |
double Sigma=f[n]->GetParameter(2);
|
224 |
mean.push_back(Mean);
|
225 |
sigma.push_back(Sigma);
|
226 |
}
|
227 |
|
228 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
229 |
int n;
|
230 |
if (logscale){
|
231 |
n=(int)(Nbins*(log(i->GetMeas())-log(minY))/(log(maxY)-log(minY)));
|
232 |
if (n>=Nbins) n=Nbins-1;
|
233 |
} else {
|
234 |
n=(int)(Nbins*(i->GetMeas()-minY)/d);
|
235 |
if (n>=Nbins) n=Nbins-1;
|
236 |
};
|
237 |
double delta = mean.at(n) - i->GetTruth();
|
238 |
//Use only events with truth value in 3 sigma of mean truth... ???
|
239 |
if (outlier && fabs(delta/sigma.at(n))>3.) continue;
|
240 |
double A, B;
|
241 |
double ERR = error(i->GetTruth()+2*delta);
|
242 |
if (ERR > 0){
|
243 |
A = 1./sqrt(2*TMath::Pi())/i->GetError()*exp(-pow(delta,2)/2./pow(i->GetError(),2));
|
244 |
B = 1./sqrt(2*TMath::Pi())/ERR*exp(-pow(delta,2)/2./pow(ERR,2));
|
245 |
double newweight = 2*B/(A+B);
|
246 |
i->SetWeight(i->GetWeight_orig()*newweight);
|
247 |
}
|
248 |
dataCut.push_back(*i);
|
249 |
}
|
250 |
data.clear();
|
251 |
data.assign(dataCut.begin(),dataCut.end());
|
252 |
cout<<"Events at end of ResolutionReweight: "<<data.size()<<endl;
|
253 |
|
254 |
minY=99999.;
|
255 |
maxY=0;
|
256 |
minX=99999.;
|
257 |
maxX=0;
|
258 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
259 |
if (i->GetMeas() < minY) minY=i->GetMeas();
|
260 |
if (i->GetMeas() > maxY) maxY=i->GetMeas();
|
261 |
if (i->GetTruth() < minX) minX=i->GetTruth();
|
262 |
if (i->GetTruth() > maxX) maxX=i->GetTruth();
|
263 |
}
|
264 |
|
265 |
}
|
266 |
//----------------------------------------------------------
|
267 |
|
268 |
//----------------------------------------------------------
|
269 |
//symmetrize truth distribution for one measurement
|
270 |
void CorrectCutoff(bool logscale = false){
|
271 |
|
272 |
cout<<"Events at start of CorrectCutoff: "<<data.size()<<endl;
|
273 |
int Nbins=49;
|
274 |
int minEntries=200;
|
275 |
vector<TDataPoint> dataCut;
|
276 |
vector<double> mean;
|
277 |
vector<double> dmean;
|
278 |
|
279 |
TCanvas *c1 = new TCanvas("c1","Correct for cut off",0,0,1000,1000);
|
280 |
c1->Divide(7,7);
|
281 |
double d;
|
282 |
if (logscale){
|
283 |
d=(log(maxY)-log(minY))/Nbins;
|
284 |
} else {
|
285 |
d=(maxY-minY)/Nbins;
|
286 |
}
|
287 |
|
288 |
//book histos
|
289 |
TH1F* hist[Nbins];
|
290 |
TF1* f[Nbins];
|
291 |
for (int n=0; n<Nbins; ++n){
|
292 |
char hname[100];
|
293 |
sprintf(hname,"hc%i",n);
|
294 |
hist[n] = new TH1F(hname,"Truth for MeasBin", 1000, minX, maxX);
|
295 |
hist[n]->Sumw2();
|
296 |
}
|
297 |
|
298 |
//Fill histos
|
299 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
300 |
int n;
|
301 |
if (logscale){
|
302 |
n=(int)(Nbins*(log(i->GetMeas())-log(minY))/(log(maxY)-log(minY)));
|
303 |
if (n>=Nbins) n=Nbins-1;
|
304 |
} else {
|
305 |
n=(int)(Nbins*(i->GetMeas()-minY)/d);
|
306 |
if (n>=Nbins) n=Nbins-1;
|
307 |
};
|
308 |
hist[n]->Fill(i->GetTruth(),i->GetWeight());
|
309 |
}
|
310 |
|
311 |
//Fit histos
|
312 |
for (int n=0; n<Nbins; ++n){
|
313 |
cout<<n<<" of "<<Nbins<<endl;
|
314 |
if (hist[n]->GetEntries()<minEntries){
|
315 |
mean.push_back(0);
|
316 |
dmean.push_back(0);
|
317 |
continue;
|
318 |
}
|
319 |
char fname[100];
|
320 |
sprintf(fname,"fc%i",n);
|
321 |
f[n] = new TF1(fname,"gausn",minX,maxX);
|
322 |
//use a guess for starting values
|
323 |
f[n]->SetParameters(hist[n]->Integral("width"),hist[n]->GetMean(),hist[n]->GetRMS());
|
324 |
c1->cd(n+1);
|
325 |
hist[n]->SetLineWidth(0);
|
326 |
hist[n]->Draw();
|
327 |
f[n]->SetLineWidth(0);
|
328 |
f[n]->SetLineColor(2);
|
329 |
hist[n]->Fit(fname,"ILLRQ");
|
330 |
double Mean=f[n]->GetParameter(1);
|
331 |
mean.push_back(Mean);
|
332 |
double dMean=0;
|
333 |
if (Mean<minX || Mean>maxX){
|
334 |
dMean=0;
|
335 |
} else {
|
336 |
double dMeanMin=fabs(Mean-minX);
|
337 |
double dMeanMax=fabs(Mean-maxX);
|
338 |
dMeanMin<dMeanMax?dMean=dMeanMin:dMean=dMeanMax;
|
339 |
}
|
340 |
dmean.push_back(dMean);
|
341 |
}
|
342 |
c1->SaveAs("cut_LVMini.eps");
|
343 |
|
344 |
//symmetrize distributions
|
345 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
346 |
int n;
|
347 |
if (logscale){
|
348 |
n=(int)(Nbins*(log(i->GetMeas())-log(minY))/(log(maxY)-log(minY)));
|
349 |
if (n>=Nbins) n=Nbins-1;
|
350 |
} else {
|
351 |
n=(int)(Nbins*(i->GetMeas()-minY)/d);
|
352 |
if (n>=Nbins) n=Nbins-1;
|
353 |
};
|
354 |
double delta = fabs(mean.at(n) - i->GetTruth());
|
355 |
if (delta>dmean.at(n)) continue;
|
356 |
dataCut.push_back(*i);
|
357 |
}
|
358 |
|
359 |
data.clear();
|
360 |
data.assign(dataCut.begin(),dataCut.end());
|
361 |
cout<<"Events at end of CorrectCutoff: "<<data.size()<<endl;
|
362 |
|
363 |
minY=99999.;
|
364 |
maxY=0;
|
365 |
minX=99999.;
|
366 |
maxX=0;
|
367 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
368 |
if (i->GetMeas() < minY) minY=i->GetMeas();
|
369 |
if (i->GetMeas() > maxY) maxY=i->GetMeas();
|
370 |
if (i->GetTruth() < minX) minX=i->GetTruth();
|
371 |
if (i->GetTruth() > maxX) maxX=i->GetTruth();
|
372 |
}
|
373 |
|
374 |
}
|
375 |
//----------------------------------------------------------
|
376 |
|
377 |
public:
|
378 |
|
379 |
vector<TDataPoint>* GetDataRef(){return &data;};
|
380 |
|
381 |
//----------------------------------------------------------
|
382 |
void DrawTruth(){
|
383 |
TH1F* hist = new TH1F("truth","True distribution of measurement", 100, 0, maxX);
|
384 |
hist->Sumw2();
|
385 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
386 |
hist->Fill(i->GetTruth(),i->GetWeight());
|
387 |
}
|
388 |
TCanvas *c1 = new TCanvas("c1","Truth",0,0,600,600);
|
389 |
c1->Divide(1,1);
|
390 |
c1->cd(1);
|
391 |
c1->cd(1)->SetLogy();
|
392 |
hist->SetXTitle("Truth");
|
393 |
hist->Draw();
|
394 |
c1->SaveAs("truth_LVMini.eps");
|
395 |
};
|
396 |
//----------------------------------------------------------
|
397 |
|
398 |
//----------------------------------------------------------
|
399 |
void DrawMeas(){
|
400 |
TH1F* hist = new TH1F("meas","Measured distribution of measurement", 100, 0, maxY);
|
401 |
hist->Sumw2();
|
402 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
403 |
hist->Fill(i->GetMeas(),i->GetWeight());
|
404 |
}
|
405 |
TCanvas *c1 = new TCanvas("c2","Measurement",0,0,600,600);
|
406 |
c1->Divide(1,1);
|
407 |
c1->cd(1);
|
408 |
c1->cd(1)->SetLogy();
|
409 |
hist->SetXTitle("Measurement");
|
410 |
hist->Draw();
|
411 |
c1->SaveAs("meas_LVMini.eps");
|
412 |
};
|
413 |
//----------------------------------------------------------
|
414 |
|
415 |
//----------------------------------------------------------
|
416 |
void DrawCalibConst(vector<double> p){
|
417 |
TGraph cgr(sp.size(), &sp.front(), &p.front());
|
418 |
TSpline3 *cspl = new TSpline3("cspl",&cgr);
|
419 |
vector<double> vx, vy;
|
420 |
int Nbins = 100;
|
421 |
for (int i=0; i<=Nbins; ++i){
|
422 |
double x=minY+i*(maxY-minY)/Nbins;
|
423 |
vx.push_back(double(x));
|
424 |
double c=calib(x,cspl);
|
425 |
vy.push_back(c);
|
426 |
}
|
427 |
TGraph* CalibConst = new TGraph(vx.size(), &vx.front(), &vy.front());
|
428 |
TCanvas *c1 = new TCanvas("c3","Calibration Constant vs. Measurement",0,0,600,600);
|
429 |
c1->Divide(1,1);
|
430 |
c1->cd(1);
|
431 |
CalibConst->SetLineColor(2);
|
432 |
CalibConst->SetLineWidth(4);
|
433 |
CalibConst->SetTitle("Calibration Constant");
|
434 |
CalibConst->GetXaxis()->SetTitle("Truth");
|
435 |
CalibConst->GetYaxis()->SetTitle("C");
|
436 |
CalibConst->SetMinimum(0.9);
|
437 |
CalibConst->SetMaximum(1.3);
|
438 |
CalibConst->Draw("ACP");
|
439 |
//CalibConst->Draw("L");
|
440 |
c1->SaveAs("calibconst_LVMini.eps");
|
441 |
};
|
442 |
//----------------------------------------------------------
|
443 |
|
444 |
//----------------------------------------------------------
|
445 |
void DrawRatio(vector<double> p){
|
446 |
TGraph cgr(sp.size(), &sp.front(), &p.front());
|
447 |
TSpline3 *cspl = new TSpline3("cspl",&cgr);
|
448 |
TH2F* hist1 = new TH2F("r1","Measurement/Truth vs. Truth", 100, 0, 1000, 100, 0.0, 2.0);
|
449 |
TH2F* hist2 = new TH2F("r2","Measurement/Truth vs. Measurement", 100, 0, 1000, 100, 0.0, 2.0);
|
450 |
TH2F* hist3 = new TH2F("r3","Measurement/Truth vs. CalibMeasurement", 100, 0, 1000, 100, 0.0, 2.0);
|
451 |
TH2F* hist4 = new TH2F("r4","CalibMeasurement/Truth vs. Truth", 100, 0, 1000, 100, 0.0, 2.0);
|
452 |
TH2F* hist5 = new TH2F("r5","CalibMeasurement/Truth vs. Measurement", 100, 0, 1000, 100, 0.0, 2.0);
|
453 |
TH2F* hist6 = new TH2F("r6","CalibMeasurement/Truth vs. CalibMeasurement", 100, 0, 1000, 100, 0.0, 2.0);
|
454 |
hist1->Sumw2();
|
455 |
hist2->Sumw2();
|
456 |
hist3->Sumw2();
|
457 |
hist4->Sumw2();
|
458 |
hist5->Sumw2();
|
459 |
hist6->Sumw2();
|
460 |
hist1->SetTitleOffset(1.2,"Y");
|
461 |
hist2->SetTitleOffset(1.2,"Y");
|
462 |
hist3->SetTitleOffset(1.2,"Y");
|
463 |
hist4->SetTitleOffset(1.2,"Y");
|
464 |
hist5->SetTitleOffset(1.2,"Y");
|
465 |
hist6->SetTitleOffset(1.2,"Y");
|
466 |
hist1->SetTitleOffset(1.2,"Y");
|
467 |
hist1->SetYTitle("k=Meas/Truth");
|
468 |
hist2->SetYTitle("k=Meas/Truth");
|
469 |
hist3->SetYTitle("k=Meas/Truth");
|
470 |
hist4->SetYTitle("k=calibMeas/Truth");
|
471 |
hist5->SetYTitle("k=calibMeas/Truth");
|
472 |
hist6->SetYTitle("k=calibMeas/Truth");
|
473 |
hist1->SetXTitle("Truth");
|
474 |
hist4->SetXTitle("Truth");
|
475 |
hist2->SetXTitle("Measurement");
|
476 |
hist5->SetXTitle("Measurement");
|
477 |
hist3->SetXTitle("calib. Measurement");
|
478 |
hist6->SetXTitle("calib. Measurement");
|
479 |
for (vector<TDataPoint>::iterator i=data.begin(); i<data.end(); ++i){
|
480 |
double mess=i->GetMeas();
|
481 |
double truth=i->GetTruth();
|
482 |
double c=calib(mess,cspl);
|
483 |
hist1->Fill(truth, mess/truth, i->GetWeight());
|
484 |
hist2->Fill(mess, mess/truth, i->GetWeight());
|
485 |
hist3->Fill(c*mess, mess/truth, i->GetWeight());
|
486 |
hist4->Fill(truth, (c*mess)/truth, i->GetWeight());
|
487 |
hist5->Fill(mess, (c*mess)/truth, i->GetWeight());
|
488 |
hist6->Fill(c*mess, (c*mess)/truth, i->GetWeight());
|
489 |
}
|
490 |
gROOT->SetStyle("Plain");
|
491 |
gStyle->SetPalette(51,0);
|
492 |
TCanvas *c1 = new TCanvas("c4","Ration",0,0,900,900);
|
493 |
TF1 *f = new TF1("f","gaus",minX,maxX);
|
494 |
TObjArray aSlices;
|
495 |
c1->Divide(3,3);
|
496 |
c1->cd(1);
|
497 |
gPad->SetRightMargin(0.15);
|
498 |
gPad->SetLeftMargin(0.15);
|
499 |
hist1->Draw("COLZ");
|
500 |
hist1->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
501 |
TH1* hist1_1 = (TH1*)(aSlices[1]);
|
502 |
TH1* hist1_2 = (TH1*)(aSlices[2]);
|
503 |
for (int i=0; i<hist1_1->GetNbinsX(); ++i){
|
504 |
hist1_1->SetBinError(i,hist1_2->GetBinContent(i));
|
505 |
}
|
506 |
hist1_1->SetLineColor(2);
|
507 |
hist1_1->Draw("same");
|
508 |
hist1->SetLineColor(5);
|
509 |
hist1->ProfileX()->Draw("same");
|
510 |
|
511 |
c1->cd(2);
|
512 |
gPad->SetRightMargin(0.12);
|
513 |
hist2->Draw("COLZ");
|
514 |
hist2->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
515 |
TH1* hist2_1 = (TH1*)(aSlices[1]);
|
516 |
TH1* hist2_2 = (TH1*)(aSlices[2]);
|
517 |
for (int i=0; i<hist2_1->GetNbinsX(); ++i){
|
518 |
hist2_1->SetBinError(i,hist2_2->GetBinContent(i));
|
519 |
}
|
520 |
hist2_1->SetLineColor(2);
|
521 |
hist2_1->Draw("same");
|
522 |
hist2->SetLineColor(5);
|
523 |
hist2->ProfileX()->Draw("same");
|
524 |
|
525 |
c1->cd(3);
|
526 |
gPad->SetRightMargin(0.12);
|
527 |
hist3->Draw("COLZ");
|
528 |
hist3->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
529 |
TH1* hist3_1 = (TH1*)(aSlices[1]);
|
530 |
TH1* hist3_2 = (TH1*)(aSlices[2]);
|
531 |
for (int i=0; i<hist3_1->GetNbinsX(); ++i){
|
532 |
hist3_1->SetBinError(i,hist3_2->GetBinContent(i));
|
533 |
}
|
534 |
hist3_1->SetLineColor(2);
|
535 |
hist3_1->Draw("same");
|
536 |
hist3->SetLineColor(5);
|
537 |
hist3->ProfileX()->Draw("same");
|
538 |
|
539 |
c1->cd(4);
|
540 |
gPad->SetRightMargin(0.12);
|
541 |
hist4->Draw("COLZ");
|
542 |
hist4->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
543 |
TH1* hist4_1 = (TH1*)(aSlices[1]);
|
544 |
TH1* hist4_2 = (TH1*)(aSlices[2]);
|
545 |
for (int i=0; i<hist4_1->GetNbinsX(); ++i){
|
546 |
hist4_1->SetBinError(i,hist4_2->GetBinContent(i));
|
547 |
}
|
548 |
hist4_1->SetLineColor(2);
|
549 |
hist4_1->Draw("same");
|
550 |
hist4->SetLineColor(5);
|
551 |
hist4->ProfileX()->Draw("same");
|
552 |
|
553 |
c1->cd(5);
|
554 |
gPad->SetRightMargin(0.12);
|
555 |
hist5->Draw("COLZ");
|
556 |
hist5->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
557 |
TH1* hist5_1 = (TH1*)(aSlices[1]);
|
558 |
TH1* hist5_2 = (TH1*)(aSlices[2]);
|
559 |
for (int i=0; i<hist5_1->GetNbinsX(); ++i){
|
560 |
hist5_1->SetBinError(i,hist5_2->GetBinContent(i));
|
561 |
}
|
562 |
hist5_1->SetLineColor(2);
|
563 |
hist5_1->Draw("same");
|
564 |
hist5->SetLineColor(5);
|
565 |
hist5->ProfileX()->Draw("same");
|
566 |
|
567 |
c1->cd(6);
|
568 |
gPad->SetRightMargin(0.12);
|
569 |
hist6->Draw("COLZ");
|
570 |
hist6->FitSlicesY(f, 0, -1, 0, "NQ", &aSlices);
|
571 |
TH1* hist6_1 = (TH1*)(aSlices[1]);
|
572 |
TH1* hist6_2 = (TH1*)(aSlices[2]);
|
573 |
for (int i=0; i<hist6_1->GetNbinsX(); ++i){
|
574 |
hist6_1->SetBinError(i,hist6_2->GetBinContent(i));
|
575 |
}
|
576 |
hist6_1->SetLineColor(2);
|
577 |
hist6_1->Draw("same");
|
578 |
hist6->SetLineColor(5);
|
579 |
hist6->ProfileX()->Draw("same");
|
580 |
|
581 |
c1->cd(7);
|
582 |
hist4_1->SetTitleOffset(1.2,"Y");
|
583 |
hist4_1->SetXTitle("Truth");
|
584 |
hist4_1->SetYTitle("k");
|
585 |
hist4_1->SetLineWidth(0);
|
586 |
hist4_1->SetLineColor(2);
|
587 |
hist4_1->SetMinimum(0.95);
|
588 |
hist4_1->SetMaximum(1.05);
|
589 |
hist4_1->Draw();
|
590 |
|
591 |
c1->cd(8);
|
592 |
hist5_1->SetTitleOffset(1.2,"Y");
|
593 |
hist5_1->SetXTitle("Measurement");
|
594 |
hist5_1->SetYTitle("k");
|
595 |
hist5_1->SetLineWidth(0);
|
596 |
hist5_1->SetLineColor(2);
|
597 |
hist5_1->SetMinimum(0.95);
|
598 |
hist5_1->SetMaximum(1.05);
|
599 |
hist5_1->Draw();
|
600 |
|
601 |
c1->cd(9);
|
602 |
hist6_1->SetTitleOffset(1.2,"Y");
|
603 |
hist6_1->SetXTitle("calib. Measurement");
|
604 |
hist6_1->SetYTitle("k");
|
605 |
hist6_1->SetLineWidth(0);
|
606 |
hist6_1->SetLineColor(2);
|
607 |
hist6_1->SetMinimum(0.95);
|
608 |
hist6_1->SetMaximum(1.05);
|
609 |
hist6_1->Draw();
|
610 |
|
611 |
c1->SaveAs("ratio_LVMini.eps");
|
612 |
};
|
613 |
//----------------------------------------------------------
|
614 |
|
615 |
//----------------------------------------------------------
|
616 |
//constructor
|
617 |
TData(int N=100, double min=300., double max=700., int npar=10,
|
618 |
bool flat=false,
|
619 |
bool cutoff=false, bool cutofflog=false,
|
620 |
bool reweight=false, bool reweightlog=false,
|
621 |
bool reco=false){
|
622 |
Nevts = N;
|
623 |
minX=99999;
|
624 |
maxX=0;
|
625 |
minY=99990;
|
626 |
maxY=0;
|
627 |
int Nnegative=0;
|
628 |
TF1 *recoeff = new TF1("f","pow(x/30.,2)/(1.+pow(x/30.,2))");
|
629 |
for (int i=0;i<Nevts;i++) {
|
630 |
double x = gRandom->Rndm(i);
|
631 |
//double truth = min+(max-min)*x;
|
632 |
double truth = gRandom->Exp(150);
|
633 |
double width = error(truth);
|
634 |
double meas = gRandom->Gaus(0.9*truth,width);
|
635 |
double pr = gRandom->Rndm(i);
|
636 |
//double pr = -9999.;
|
637 |
if (meas<0 && truth>min){
|
638 |
++Nnegative;
|
639 |
cout<<"WARNING: negative measurement (truth="<<truth<<",meas="<<meas<<") no. "<<Nnegative<<endl;
|
640 |
}
|
641 |
if (meas>0 && truth>min && pr<(*recoeff)(truth)){
|
642 |
if (meas<minY) minY=meas;
|
643 |
if (meas>maxY) maxY=meas;
|
644 |
if (truth<minX) minX=truth;
|
645 |
if (truth>maxX) maxX=truth;
|
646 |
double error = width;
|
647 |
double weight=1.;
|
648 |
//reco eff correction
|
649 |
if (reco) weight = 1./(*recoeff)(truth);
|
650 |
TDataPoint d(truth, meas, error, weight);
|
651 |
data.push_back(d);
|
652 |
}
|
653 |
}
|
654 |
sp.clear();
|
655 |
|
656 |
if (flat) FlattenSpectra();
|
657 |
if (reweight){
|
658 |
bool outlier=true;
|
659 |
ResolutionReweight(reweightlog, outlier, 5);
|
660 |
ResolutionReweight(reweightlog, outlier, 4);
|
661 |
ResolutionReweight(reweightlog, outlier, 3);
|
662 |
}
|
663 |
if (cutoff) CorrectCutoff(cutofflog);
|
664 |
|
665 |
dY=(maxY-minY)/(npar-3);
|
666 |
for (int i=0; i<npar; ++i){
|
667 |
sp.push_back(minY+(i-1)*dY);
|
668 |
}
|
669 |
|
670 |
};
|
671 |
//----------------------------------------------------------
|
672 |
|
673 |
//----------------------------------------------------------
|
674 |
void evalF(int &NPAR, vector<double>* GRAD, double &FSUM, vector<double>* PAR){
|
675 |
|
676 |
FSUM = chi2(PAR);
|
677 |
// gradients
|
678 |
double eps=1.e-5;
|
679 |
for (int i=0; i<NPAR; ++i){
|
680 |
vector<double> PAR1 = *PAR;
|
681 |
vector<double> PAR2 = *PAR;
|
682 |
PAR1.at(i) += eps;
|
683 |
PAR2.at(i) -= eps;
|
684 |
GRAD->at(i) = (chi2(&PAR1)-chi2(&PAR2))/2./eps;
|
685 |
PAR1.at(i) += eps;
|
686 |
PAR2.at(i) -= eps;
|
687 |
GRAD->at(i+NPAR) = (chi2(&PAR1)-2*FSUM+chi2(&PAR2))/4./eps/eps;
|
688 |
}
|
689 |
}
|
690 |
//----------------------------------------------------------
|
691 |
|
692 |
//destructor
|
693 |
~TData(){};
|
694 |
|
695 |
};
|
696 |
////////////////////////////////////////////////////////////
|
697 |
|
698 |
////////////////////////////////////////////////////////////
|
699 |
int main(){
|
700 |
|
701 |
int NPAR=11;
|
702 |
|
703 |
TROOT simple("simple","Some calibration toyMC tests");
|
704 |
bool flat = true;
|
705 |
bool cutoff = true;
|
706 |
bool cutofflog = true;
|
707 |
bool reweight = true;
|
708 |
bool reweightlog = true;
|
709 |
bool reco = true;
|
710 |
TData* toy= new TData(1000000,20,99999,NPAR,flat,cutoff,cutofflog,reweight,reweightlog,reco);
|
711 |
toy->DrawTruth();
|
712 |
toy->DrawMeas();
|
713 |
|
714 |
////// LVMINI //////
|
715 |
int NITER = 500;
|
716 |
int MVEC;
|
717 |
NPAR<29?MVEC=NPAR:MVEC=29;
|
718 |
int NAUX = 10000;
|
719 |
|
720 |
vector<double> AUX(NAUX, 0.);
|
721 |
vector<double> parameter;
|
722 |
double FSUM;
|
723 |
double FOPT, FEDM, DUMMY;
|
724 |
|
725 |
for (int i=0; i<NPAR; ++i){
|
726 |
parameter.push_back(1./0.9);
|
727 |
}
|
728 |
float eps =float(1.E-3);
|
729 |
float wlf1=1.E-4;
|
730 |
float wlf2=0.9;
|
731 |
//default values
|
732 |
//double wlf1=-1.;
|
733 |
//double wlf2=-1.;
|
734 |
|
735 |
lvmeps_(eps,wlf1,wlf2);
|
736 |
|
737 |
int NPARNEG = -fabs(NPAR);
|
738 |
if(lvmdim_(NPAR, MVEC) > NAUX)
|
739 |
cout<<"Aux field too small: "<<NAUX<<"<"<<lvmdim_(NPAR, MVEC)<<" needed entries"<<endl;
|
740 |
lvmini_(NPARNEG, MVEC, NITER, &AUX.front());
|
741 |
int IFLAG;
|
742 |
int IRET = 0;
|
743 |
int ITER = 0;
|
744 |
do {
|
745 |
++ITER;
|
746 |
toy->evalF(NPAR, &AUX, FSUM, ¶meter);
|
747 |
lvmfun_(¶meter.front(), FSUM, IRET, &AUX.front());
|
748 |
lvmprt_(2, &AUX.front(), 2); //print out
|
749 |
/*
|
750 |
if (ITER%10==0){
|
751 |
toy->DrawRatio(parameter);
|
752 |
toy->DrawCalibConst(parameter);
|
753 |
}
|
754 |
*/
|
755 |
} while (IRET<0);
|
756 |
int error_index=2;
|
757 |
error_index = lvmind_(error_index);
|
758 |
|
759 |
toy->DrawRatio(parameter);
|
760 |
toy->DrawCalibConst(parameter);
|
761 |
|
762 |
return 0;
|
763 |
|
764 |
}
|
765 |
////////////////////////////////////////////////////////////
|
766 |
|