1 |
#! /usr/bin/env python2
|
2 |
# -*- coding: utf-8 -*-
|
3 |
import ROOT
|
4 |
ROOT.gSystem.Load("libTreeObjects.so")
|
5 |
import argparse
|
6 |
from multiplot import *
|
7 |
from treeFunctions import *
|
8 |
import Styles
|
9 |
style = Styles.tdrStyle()
|
10 |
style.SetOptLogy(0)
|
11 |
ROOT.TGaxis.SetMaxDigits(3)
|
12 |
import os
|
13 |
|
14 |
import ConfigParser
|
15 |
axisConf = ConfigParser.SafeConfigParser()
|
16 |
axisConf.read("axis.cfg")
|
17 |
|
18 |
def divideDatasets( d1, d2, label, unit ):
|
19 |
# d1, d2 are multiplot.Datasets (own definition)
|
20 |
ratioHists = []
|
21 |
for dataset in [d1, d2]:
|
22 |
if dataset.label == "e_{gen}":
|
23 |
try:
|
24 |
plot = opts.plot.replace("photon","genElectron")
|
25 |
except:
|
26 |
plot = opts.plot
|
27 |
else:
|
28 |
plot = opts.plot
|
29 |
|
30 |
yutarosBinning = [ 25, 35, 40, 50, 60, 80, 100 ]
|
31 |
hist = createHistoFromTree( dataset.tree, plot, "weight*(%s)"%(dataset.additionalCut), nBins=yutarosBinning)
|
32 |
hist.SetTitle(";%s%s;Entries"%(label,unit))
|
33 |
hist.SetLineColor( dataset.color )
|
34 |
hist.SetLineWidth(2)
|
35 |
ratioHists.append( hist )
|
36 |
|
37 |
#ratioHists[0].Divide( ratioHists[1] ) # normal division
|
38 |
ratioHists[0].Divide( ratioHists[0], ratioHists[1], 1, 1, "B" ) # division using bayes theorem
|
39 |
ratioHists[0].SetTitle(";%s%s;%s/%s"%(label,unit,d1.label,d2.label))
|
40 |
return ratioHists[0]
|
41 |
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
arguments = argparse.ArgumentParser( description="Simple EWK" )
|
45 |
arguments.add_argument( "--plot", default="photon.pt" )
|
46 |
arguments.add_argument( "--input", default="EWK_V01.12_tree.root" )
|
47 |
arguments.add_argument( "--savePrefix", default="new" )
|
48 |
opts = arguments.parse_args()
|
49 |
|
50 |
ROOT.gROOT.SetBatch()
|
51 |
import re
|
52 |
# dataset name is from beginning till first '_'
|
53 |
slimFileName = opts.input.replace( os.path.basename(opts.input), "slim"+os.path.basename(opts.input))
|
54 |
dataset = re.match("slim([^_]*)_.*", slimFileName ).groups()[0]
|
55 |
|
56 |
|
57 |
genE = Dataset( slimFileName, "genElectronTree", "1", "e_{gen}", 3 )
|
58 |
genE_with_match = Dataset( slimFileName, "genElectronTree", "genElectron.phi > 4", "e_{gen, match}", 1 )
|
59 |
gamma = Dataset( slimFileName, "photonTree", "1", "#gamma", 1 )
|
60 |
gamma_with_match = Dataset( slimFileName, "photonTree", "photon.genInformation == 1", "#gamma_{match}", 1 )
|
61 |
|
62 |
label, unit = readAxisConf( opts.plot, axisConf )
|
63 |
e_match_e_reco = divideDatasets( gamma_with_match, genE, label, unit )
|
64 |
e_match = divideDatasets( genE_with_match, gamma, label, unit )
|
65 |
|
66 |
|
67 |
can = ROOT.TCanvas()
|
68 |
can.cd()
|
69 |
can.SetLogy(0)
|
70 |
|
71 |
datasetLabel = ROOT.TPaveText(.4,.9,.6,.98, "ndc")
|
72 |
datasetLabel.SetFillColor(0)
|
73 |
datasetLabel.SetBorderSize(0)
|
74 |
datasetLabel.AddText( dataset )
|
75 |
|
76 |
|
77 |
e_match_e_reco.GetYaxis().SetTitle("#varepsilon_{match}#upointf_{e_{gen}#rightarrow#gamma}")
|
78 |
e_match_e_reco.Draw("e")
|
79 |
datasetLabel.Draw()
|
80 |
can.SaveAs("plots/%sEfficiencyFakeRate.pdf"%dataset)
|
81 |
e_match.GetYaxis().SetTitle("#varepsilon_{match}")
|
82 |
e_match.Draw("e")
|
83 |
datasetLabel.Draw()
|
84 |
can.SaveAs("plots/%sEfficiency.pdf"%dataset)
|
85 |
|
86 |
h = e_match_e_reco.Clone("fakerate")
|
87 |
h.GetYaxis().SetTitle("f_{e_{gen}#rightarrow #gamma}")
|
88 |
|
89 |
h.Divide( e_match )
|
90 |
#h = divideDatasets( gamma, recE, label, unit )
|
91 |
|
92 |
|
93 |
yutaro = h.Clone("yutaro")
|
94 |
yutaro.SetBinContent(1,0.0131)
|
95 |
yutaro.SetBinError (1,0.0004)
|
96 |
yutaro.SetBinContent(2,0.0146)
|
97 |
yutaro.SetBinError (2,0.0002)
|
98 |
yutaro.SetBinContent(3,0.0148)
|
99 |
yutaro.SetBinError (3,0.0001)
|
100 |
yutaro.SetBinContent(4,0.0111)
|
101 |
yutaro.SetBinError (4,0.0002)
|
102 |
yutaro.SetBinContent(5,0.0111)
|
103 |
yutaro.SetBinError (5,0.0004)
|
104 |
yutaro.SetBinContent(6,0.0085)
|
105 |
yutaro.SetBinError (6,0.0005)
|
106 |
yutaro.SetLineColor(2)
|
107 |
yutaro.SetMarkerColor(2)
|
108 |
|
109 |
h.SetMaximum(max(h.GetMaximum(),yutaro.GetMaximum())+0.002)
|
110 |
h.SetMinimum(min(h.GetMinimum(),yutaro.GetMinimum())-0.002)
|
111 |
h.Draw("e")
|
112 |
yutaro.Draw("same e0")
|
113 |
|
114 |
leg = myLegend(.5,.70,.95,.92)
|
115 |
leg.AddEntry( h, h.GetYaxis().GetTitle(), "lp")
|
116 |
leg.AddEntry( yutaro, "Yutaro's f_{e#rightarrow#gamma}", "lp" )
|
117 |
leg.SetBorderSize(1)
|
118 |
leg.Draw()
|
119 |
|
120 |
datasetLabel.Draw()
|
121 |
|
122 |
|
123 |
saveName = "%s_%s_%s_%s"%(h.GetYaxis().GetTitle(),dataset,opts.plot,opts.savePrefix)
|
124 |
saveName = saveName.replace("/","VS")
|
125 |
saveName = saveName.replace(" ","_")
|
126 |
unallowedCharacters = ["{","}","(",")","#","|","."]
|
127 |
for char in unallowedCharacters:
|
128 |
saveName = saveName.replace( char, "" )
|
129 |
|
130 |
can.SaveAs("plots/%s.pdf"%saveName)
|
131 |
|
132 |
|