1 |
import tarfile, re, math, ROOT, sys
|
2 |
sys.path.append("/afs/naf.desy.de/user/n/nowaf/UserCode/nowaf/PythonScripts/")
|
3 |
import Scan_cff as Scan
|
4 |
|
5 |
class PointLimit:
|
6 |
def __init__( self ):
|
7 |
self.m0 = 0
|
8 |
self.m12 = 0
|
9 |
self.tanb = 0
|
10 |
self.CLsObsAs = 0
|
11 |
self.CLsExpAs = 0
|
12 |
self.CLsExpAs_m2sigma = 0
|
13 |
self.CLsExpAs_m1sigma = 0
|
14 |
self.CLsExpAs_p2sigma = 0
|
15 |
self.CLsExpAs_p1sigma = 0
|
16 |
self.CLsObs = 0
|
17 |
self.CLsExp = 0
|
18 |
self.CLsExp_m2sigma = 0
|
19 |
self.CLsExp_m1sigma = 0
|
20 |
self.CLsExp_p2sigma = 0
|
21 |
self.CLsExp_p1sigma = 0
|
22 |
self.CLsObs_err = 0
|
23 |
self.CLsExp_err = 0
|
24 |
self.CLsExp_m2sigma_err = 0
|
25 |
self.CLsExp_m1sigma_err = 0
|
26 |
self.CLsExp_p2sigma_err = 0
|
27 |
self.CLsExp_p1sigma_err = 0
|
28 |
self.CLsExpPl = 0
|
29 |
self.CLsExpPl_m2sigma = 0
|
30 |
self.CLsExpPl_m1sigma = 0
|
31 |
self.CLsExpPl_p2sigma = 0
|
32 |
self.CLsExpPl_p1sigma = 0
|
33 |
self.acceptable = True
|
34 |
pass
|
35 |
pass
|
36 |
|
37 |
def readInLimits( tarDir, tarName ):
|
38 |
|
39 |
tar = tarfile.open( tarDir + tarName )
|
40 |
#print tar.getnames()
|
41 |
points = []
|
42 |
nInacceptablePoints = 0
|
43 |
nPoints = 0
|
44 |
for filename in tar.getnames():
|
45 |
if not re.search( "result.txt", filename ):
|
46 |
continue
|
47 |
#print filename
|
48 |
f = tar.extractfile( filename )
|
49 |
p = PointLimit()
|
50 |
filenameSnippets = filename.split( "_" )
|
51 |
#print filenameSnippets
|
52 |
p.m0 = int( filenameSnippets[ 1 ] )
|
53 |
p.m12 = int( filenameSnippets[ 2 ] )
|
54 |
filenameSnippetSnippets = filenameSnippets[ 3 ].split( "." )
|
55 |
#print filenameSnippetSnippets
|
56 |
p.tanb = int( filenameSnippetSnippets[ 0 ] )
|
57 |
pointAccepted = True
|
58 |
nPoints += 1
|
59 |
for line in f.readlines():
|
60 |
#print line
|
61 |
if not pointAccepted:
|
62 |
continue
|
63 |
if not re.search( "CLs", line ):
|
64 |
continue
|
65 |
if re.search( "scanned", line ):
|
66 |
continue
|
67 |
#print line
|
68 |
lineSnippets = line.split( "=" )
|
69 |
#print lineSnippets
|
70 |
value = lineSnippets[ 1 ].rstrip( " " )
|
71 |
try:
|
72 |
value = float( value.rstrip( "\n" ) )
|
73 |
except:
|
74 |
pointAccepted = False
|
75 |
value = -1
|
76 |
pass
|
77 |
if not pointAccepted:
|
78 |
continue
|
79 |
#print lineSnippets[ 0 ], "=", value
|
80 |
if re.search( "asymptotic", lineSnippets[ 0 ] ):
|
81 |
if re.search( "observed", lineSnippets[ 0 ] ):
|
82 |
p.CLsObsAs = value
|
83 |
elif re.search( "expected", lineSnippets[ 0 ] ):
|
84 |
if re.search( "m2sigma", lineSnippets[ 0 ] ) :
|
85 |
p.CLsExpAs_m2sigma = value
|
86 |
elif re.search( "m1sigma", lineSnippets[ 0 ] ) :
|
87 |
p.CLsExpAs_m1sigma = value
|
88 |
elif re.search( "p2sigma", lineSnippets[ 0 ] ) :
|
89 |
p.CLsExpAs_p2sigma = value
|
90 |
elif re.search( "p1sigma", lineSnippets[ 0 ] ) :
|
91 |
p.CLsExpAs_p1sigma = value
|
92 |
else:
|
93 |
p.CLsExpAs = value
|
94 |
pass
|
95 |
pass
|
96 |
pass
|
97 |
elif re.search( "likelihood", lineSnippets[ 0 ] ):
|
98 |
#if re.search( "observed", lineSnippets[ 0 ] ):
|
99 |
# p.CLsObsAs = value
|
100 |
if re.search( "expected", lineSnippets[ 0 ] ):
|
101 |
if re.search( "m2sigma", lineSnippets[ 0 ] ) :
|
102 |
p.CLsExpPl_m2sigma = value
|
103 |
elif re.search( "m1sigma", lineSnippets[ 0 ] ) :
|
104 |
p.CLsExpPl_m1sigma = value
|
105 |
elif re.search( "p2sigma", lineSnippets[ 0 ] ) :
|
106 |
p.CLsExpPl_p2sigma = value
|
107 |
elif re.search( "p1sigma", lineSnippets[ 0 ] ) :
|
108 |
p.CLsExpPl_p1sigma = value
|
109 |
else:
|
110 |
p.CLsExpPl = value
|
111 |
pass
|
112 |
pass
|
113 |
pass
|
114 |
else:
|
115 |
if re.search( "observed", lineSnippets[ 0 ] ):
|
116 |
if re.search( "error", lineSnippets[ 0 ] ):
|
117 |
p.CLsObs_err = value
|
118 |
else:
|
119 |
p.CLsObs = value
|
120 |
pass
|
121 |
pass
|
122 |
elif re.search( "expected", lineSnippets[ 0 ] ):
|
123 |
if not re.search( "error", lineSnippets[ 0 ] ):
|
124 |
if re.search( "m2sigma", lineSnippets[ 0 ] ) :
|
125 |
p.CLsExp_m2sigma = value
|
126 |
elif re.search( "m1sigma", lineSnippets[ 0 ] ) :
|
127 |
p.CLsExp_m1sigma = value
|
128 |
elif re.search( "p2sigma", lineSnippets[ 0 ] ) :
|
129 |
p.CLsExp_p2sigma = value
|
130 |
elif re.search( "p1sigma", lineSnippets[ 0 ] ) :
|
131 |
p.CLsExp_p1sigma = value
|
132 |
else:
|
133 |
p.CLsExp = value
|
134 |
pass
|
135 |
pass
|
136 |
else:
|
137 |
if re.search( "m2sigma", lineSnippets[ 0 ] ) :
|
138 |
p.CLsExp_m2sigma_err = value
|
139 |
elif re.search( "m1sigma", lineSnippets[ 0 ] ) :
|
140 |
p.CLsExp_m1sigma_err = value
|
141 |
elif re.search( "p2sigma", lineSnippets[ 0 ] ) :
|
142 |
p.CLsExp_p2sigma_err = value
|
143 |
elif re.search( "p1sigma", lineSnippets[ 0 ] ) :
|
144 |
p.CLsExp_p1sigma_err = value
|
145 |
else:
|
146 |
p.CLsExp_err = value
|
147 |
pass
|
148 |
pass
|
149 |
pass
|
150 |
pass
|
151 |
pass
|
152 |
#print p.m0
|
153 |
#print p.CLsObs
|
154 |
if pointAccepted:
|
155 |
points.append( p )
|
156 |
pass
|
157 |
else:
|
158 |
nInacceptablePoints += 1
|
159 |
print "inacceptable: m0=", p.m0, " m12=", p.m12
|
160 |
p.acceptable = False
|
161 |
points.append( p )
|
162 |
pass
|
163 |
print "Of ", nPoints, ", ", nInacceptablePoints, " were not accepted"
|
164 |
return points
|
165 |
|
166 |
def fillMissingPoints( points ):
|
167 |
lists = getAxisLists( points )
|
168 |
pointsPresent = getPointsPresent( points )
|
169 |
#print lists[ 0 ]
|
170 |
#print lists[ 1 ]
|
171 |
for x in lists[ 0 ]:
|
172 |
for y in lists[ 1 ]:
|
173 |
found = False
|
174 |
#for p in points:
|
175 |
# if p.m0 == x and p.m12 == y:
|
176 |
# found = True
|
177 |
# pass
|
178 |
# pass
|
179 |
if ( x,y ) in pointsPresent:
|
180 |
found = True
|
181 |
if not found:
|
182 |
#print "Filling up point with m0=", x, " m12=",y
|
183 |
#points.append( PointLimit() )
|
184 |
newPoint = PointLimit()
|
185 |
newPoint.m0 = x
|
186 |
newPoint.m12 = y
|
187 |
points.append( newPoint )
|
188 |
pass
|
189 |
pass
|
190 |
pass
|
191 |
return points
|
192 |
|
193 |
def getPointsPresent( points ):
|
194 |
pointsPresent = []
|
195 |
for p in points:
|
196 |
pointsPresent.append( ( p.m0, p.m12 ) )
|
197 |
pass
|
198 |
return pointsPresent
|
199 |
|
200 |
def getAxisLists( points ):
|
201 |
xwidth = getBinWidth( points, "X" )
|
202 |
ywidth = getBinWidth( points, "Y" )
|
203 |
xextrema = getExtrema( points, "X" )
|
204 |
yextrema = getExtrema( points, "Y" )
|
205 |
xlist = []
|
206 |
ylist = []
|
207 |
print "width x=", xwidth, " y=", ywidth
|
208 |
for x in range( xextrema[ 0 ], xextrema[ 1 ] + 1, int( xwidth ) ):
|
209 |
xlist.append( x )
|
210 |
pass
|
211 |
for y in range( yextrema[ 0 ], yextrema[ 1 ] + 1, int( ywidth ) ):
|
212 |
ylist.append( y )
|
213 |
pass
|
214 |
return ( xlist, ylist )
|
215 |
|
216 |
def getExtrema( points, axis ):
|
217 |
lowest = 1000000
|
218 |
highest = -10000
|
219 |
for p in points:
|
220 |
value = p.m0
|
221 |
if axis == "Y":
|
222 |
value = p.m12
|
223 |
pass
|
224 |
if value < lowest:
|
225 |
lowest = value
|
226 |
pass
|
227 |
if value > highest:
|
228 |
highest = value
|
229 |
pass
|
230 |
pass
|
231 |
return ( lowest, highest )
|
232 |
|
233 |
def getBinWidth( points, axis ):
|
234 |
delta = 100000.
|
235 |
for p1 in points:
|
236 |
for p2 in points:
|
237 |
if p1.m0 == p2.m0:
|
238 |
continue
|
239 |
if p1.m12 == p2.m12:
|
240 |
continue
|
241 |
if axis == "X":
|
242 |
if math.fabs( p1.m0 - p2.m0 ) < delta:
|
243 |
delta = math.fabs( p1.m0 - p2.m0 )
|
244 |
pass
|
245 |
pass
|
246 |
elif axis == "Y":
|
247 |
if math.fabs( p1.m12 - p2.m12 ) < delta:
|
248 |
delta = math.fabs( p1.m12 - p2.m12 )
|
249 |
pass
|
250 |
pass
|
251 |
pass
|
252 |
pass
|
253 |
return delta
|
254 |
|
255 |
def findNeighbours( p, points, axis ):
|
256 |
lower = None
|
257 |
higher = None
|
258 |
binWidth = getBinWidth( points, "X" )
|
259 |
if axis == "Y":
|
260 |
binWidth = getBinWidth( points, "Y" )
|
261 |
pass
|
262 |
for n in points:
|
263 |
if axis == "X":
|
264 |
if not n.m12 == p.m12:
|
265 |
continue
|
266 |
if n.m0 == p.m0 - binWidth:
|
267 |
lower = n
|
268 |
elif n.m0 == p.m0 + binWidth:
|
269 |
higher = n
|
270 |
pass
|
271 |
pass
|
272 |
if axis == "Y":
|
273 |
if not n.m0 == p.m0:
|
274 |
continue
|
275 |
if n.m12 == p.m12 - binWidth:
|
276 |
lower = n
|
277 |
elif n.m12 == p.m12 + binWidth:
|
278 |
higher = n
|
279 |
pass
|
280 |
pass
|
281 |
pass
|
282 |
### neighbour stays None if point is at the edge
|
283 |
return ( lower, higher )
|
284 |
|
285 |
def interpolatePoints( points ):
|
286 |
points = fillMissingPoints( points )
|
287 |
#interpolatePointsInY( points )
|
288 |
|
289 |
for p in points:
|
290 |
if not p.CLsObs == 0:
|
291 |
continue
|
292 |
noNeighboursY = False
|
293 |
noNeighboursX = False
|
294 |
neighboursY = findNeighbours( p, points, "Y" )
|
295 |
neighboursX = findNeighbours( p, points, "X" )
|
296 |
if neighboursY[ 0 ] == None or \
|
297 |
neighboursY[ 1 ] == None:
|
298 |
noNeighboursY = True
|
299 |
pass
|
300 |
if neighboursX[ 0 ] == None or \
|
301 |
neighboursX[ 1 ] == None:
|
302 |
noNeighboursX = True
|
303 |
pass
|
304 |
if not noNeighboursY and \
|
305 |
( neighboursY[ 0 ].CLsObs == 0 or \
|
306 |
neighboursY[ 1 ].CLsObs == 0 ):
|
307 |
noNeighboursY = True
|
308 |
pass
|
309 |
if not noNeighboursX and \
|
310 |
( neighboursX[ 0 ].CLsObs == 0 or \
|
311 |
neighboursX[ 1 ].CLsObs == 0 ):
|
312 |
noNeighboursX = True
|
313 |
pass
|
314 |
if noNeighboursX and noNeighboursY:
|
315 |
continue
|
316 |
print "will interpolate point m0=", p.m0, " m12=", p.m12
|
317 |
if noNeighboursX:
|
318 |
print "\tIn Y"
|
319 |
interpolatePoints1D( p, neighboursY )
|
320 |
pass
|
321 |
elif noNeighboursY:
|
322 |
print "\tIn X"
|
323 |
interpolatePoints1D( p, neighboursX )
|
324 |
else:
|
325 |
print "\tIn X and Y"
|
326 |
### interpolate in both
|
327 |
interpolatePoints2D( p, neighboursX, neighboursY )
|
328 |
pass
|
329 |
|
330 |
#print "\tResults:"
|
331 |
#print "\t\tCLsObs=", p.CLsObs
|
332 |
#print "\t\tCLsExp=", p.CLsExp
|
333 |
|
334 |
#ind = points.index( p )
|
335 |
#points[ ind ] = pnew
|
336 |
|
337 |
pass
|
338 |
return points
|
339 |
|
340 |
def interpolatePoints1D( p, neighbour ):
|
341 |
### only one point at the moment
|
342 |
p.CLsObs = neighbour[ 0 ].CLsObs + 1/2. * ( neighbour[ 1 ].CLsObs - neighbour[ 0 ].CLsObs )
|
343 |
p.CLsObsAs = neighbour[ 0 ].CLsObsAs + 1/2. * ( neighbour[ 1 ].CLsObsAs - neighbour[ 0 ].CLsObsAs )
|
344 |
p.CLsExpAs = neighbour[ 0 ].CLsExpAs + 1/2. * ( neighbour[ 1 ].CLsExpAs - neighbour[ 0 ].CLsExpAs )
|
345 |
p.CLsExpAs_m2sigma = neighbour[ 0 ].CLsExpAs_m2sigma + 1/2. * ( neighbour[ 1 ].CLsExpAs_m2sigma - neighbour[ 0 ].CLsExpAs_m2sigma )
|
346 |
p.CLsExpAs_m1sigma = neighbour[ 0 ].CLsExpAs_m1sigma + 1/2. * ( neighbour[ 1 ].CLsExpAs_m1sigma - neighbour[ 0 ].CLsExpAs_m1sigma )
|
347 |
p.CLsExpAs_p2sigma = neighbour[ 0 ].CLsExpAs_p2sigma + 1/2. * ( neighbour[ 1 ].CLsExpAs_p2sigma - neighbour[ 0 ].CLsExpAs_p2sigma )
|
348 |
p.CLsExpAs_p1sigma = neighbour[ 0 ].CLsExpAs_p1sigma + 1/2. * ( neighbour[ 1 ].CLsExpAs_p1sigma - neighbour[ 0 ].CLsExpAs_p1sigma )
|
349 |
p.CLsExp = neighbour[ 0 ].CLsExp + 1/2. * ( neighbour[ 1 ].CLsExp - neighbour[ 0 ].CLsExp )
|
350 |
p.CLsExp_m2sigma = neighbour[ 0 ].CLsExp_m2sigma + 1/2. * ( neighbour[ 1 ].CLsExp_m2sigma - neighbour[ 0 ].CLsExp_m2sigma )
|
351 |
p.CLsExp_m1sigma = neighbour[ 0 ].CLsExp_m1sigma + 1/2. * ( neighbour[ 1 ].CLsExp_m1sigma - neighbour[ 0 ].CLsExp_m1sigma )
|
352 |
p.CLsExp_p2sigma = neighbour[ 0 ].CLsExp_p2sigma + 1/2. * ( neighbour[ 1 ].CLsExp_p2sigma - neighbour[ 0 ].CLsExp_p2sigma )
|
353 |
p.CLsExp_p1sigma = neighbour[ 0 ].CLsExp_p1sigma + 1/2. * ( neighbour[ 1 ].CLsExp_p1sigma - neighbour[ 0 ].CLsExp_p1sigma )
|
354 |
p.CLsObs_err = neighbour[ 0 ].CLsObs_err + 1/2. * ( neighbour[ 1 ].CLsObs_err - neighbour[ 0 ].CLsObs_err )
|
355 |
p.CLsExp_err = neighbour[ 0 ].CLsExp_err + 1/2. * ( neighbour[ 1 ].CLsExp_err - neighbour[ 0 ].CLsExp_err )
|
356 |
p.CLsExp_m2sigma_err = neighbour[ 0 ].CLsExp_m2sigma_err + 1/2. * ( neighbour[ 1 ].CLsExp_m2sigma_err - neighbour[ 0 ].CLsExp_m2sigma_err )
|
357 |
p.CLsExp_m1sigma_err = neighbour[ 0 ].CLsExp_m1sigma_err + 1/2. * ( neighbour[ 1 ].CLsExp_m1sigma_err - neighbour[ 0 ].CLsExp_m1sigma_err )
|
358 |
p.CLsExp_p2sigma_err = neighbour[ 0 ].CLsExp_p2sigma_err + 1/2. * ( neighbour[ 1 ].CLsExp_p2sigma_err - neighbour[ 0 ].CLsExp_p2sigma_err )
|
359 |
p.CLsExp_p1sigma_err = neighbour[ 0 ].CLsExp_p1sigma_err + 1/2. * ( neighbour[ 1 ].CLsExp_p1sigma_err - neighbour[ 0 ].CLsExp_p1sigma_err )
|
360 |
pass
|
361 |
|
362 |
def interpolatePoints2D( p, neighbours1, neighbours2 ):
|
363 |
p.CLsObs = ( neighbours1[ 0 ].CLsObs + 1/2. * ( neighbours1[ 1 ].CLsObs - neighbours1[ 0 ].CLsObs ) + \
|
364 |
neighbours2[ 0 ].CLsObs + 1/2. * ( neighbours2[ 1 ].CLsObs - neighbours2[ 0 ].CLsObs ) ) / 2.
|
365 |
p.CLsObsAs = ( neighbours1[ 0 ].CLsObsAs + 1/2. * ( neighbours1[ 1 ].CLsObsAs - neighbours1[ 0 ].CLsObsAs ) + \
|
366 |
neighbours2[ 0 ].CLsObsAs + 1/2. * ( neighbours1[ 1 ].CLsObsAs - neighbours2[ 0 ].CLsObsAs ) ) / 2.
|
367 |
p.CLsExpAs = ( neighbours1[ 0 ].CLsExpAs + 1/2. * ( neighbours1[ 1 ].CLsExpAs - neighbours1[ 0 ].CLsExpAs ) + \
|
368 |
neighbours2[ 0 ].CLsExpAs + 1/2. * ( neighbours2[ 1 ].CLsExpAs - neighbours2[ 0 ].CLsExpAs ) ) / 2.
|
369 |
p.CLsExpAs_m2sigma = ( neighbours1[ 0 ].CLsExpAs_m2sigma + 1/2. * ( neighbours1[ 1 ].CLsExpAs_m2sigma - neighbours1[ 0 ].CLsExpAs_m2sigma ) + \
|
370 |
neighbours2[ 0 ].CLsExpAs_m2sigma + 1/2. * ( neighbours2[ 1 ].CLsExpAs_m2sigma - neighbours2[ 0 ].CLsExpAs_m2sigma ) ) / 2.
|
371 |
p.CLsExpAs_m1sigma = ( neighbours1[ 0 ].CLsExpAs_m1sigma + 1/2. * ( neighbours1[ 1 ].CLsExpAs_m1sigma - neighbours1[ 0 ].CLsExpAs_m1sigma ) + \
|
372 |
neighbours2[ 0 ].CLsExpAs_m1sigma + 1/2. * ( neighbours2[ 1 ].CLsExpAs_m1sigma - neighbours2[ 0 ].CLsExpAs_m1sigma ) ) / 2.
|
373 |
p.CLsExpAs_p2sigma = ( neighbours1[ 0 ].CLsExpAs_p2sigma + 1/2. * ( neighbours1[ 1 ].CLsExpAs_p2sigma - neighbours1[ 0 ].CLsExpAs_p2sigma ) + \
|
374 |
neighbours2[ 0 ].CLsExpAs_p2sigma + 1/2. * ( neighbours2[ 1 ].CLsExpAs_p2sigma - neighbours2[ 0 ].CLsExpAs_p2sigma ) ) / 2.
|
375 |
p.CLsExpAs_p1sigma = ( neighbours1[ 0 ].CLsExpAs_p1sigma + 1/2. * ( neighbours1[ 1 ].CLsExpAs_p1sigma - neighbours1[ 0 ].CLsExpAs_p1sigma ) + \
|
376 |
neighbours2[ 0 ].CLsExpAs_p1sigma + 1/2. * ( neighbours2[ 1 ].CLsExpAs_p1sigma - neighbours2[ 0 ].CLsExpAs_p1sigma ) ) / 2.
|
377 |
p.CLsExp = ( neighbours1[ 0 ].CLsExp + 1/2. * ( neighbours1[ 1 ].CLsExp - neighbours1[ 0 ].CLsExp ) + \
|
378 |
neighbours2[ 0 ].CLsExp + 1/2. * ( neighbours2[ 1 ].CLsExp - neighbours2[ 0 ].CLsExp ) ) / 2.
|
379 |
p.CLsExp_m2sigma = ( neighbours1[ 0 ].CLsExp_m2sigma + 1/2. * ( neighbours1[ 1 ].CLsExp_m2sigma - neighbours1[ 0 ].CLsExp_m2sigma ) + \
|
380 |
neighbours2[ 0 ].CLsExp_m2sigma + 1/2. * ( neighbours2[ 1 ].CLsExp_m2sigma - neighbours2[ 0 ].CLsExp_m2sigma ) ) / 2.
|
381 |
p.CLsExp_m1sigma = ( neighbours1[ 0 ].CLsExp_m1sigma + 1/2. * ( neighbours1[ 1 ].CLsExp_m1sigma - neighbours1[ 0 ].CLsExp_m1sigma ) + \
|
382 |
neighbours2[ 0 ].CLsExp_m1sigma + 1/2. * ( neighbours2[ 1 ].CLsExp_m1sigma - neighbours2[ 0 ].CLsExp_m1sigma ) ) / 2.
|
383 |
p.CLsExp_p2sigma = ( neighbours1[ 0 ].CLsExp_p2sigma + 1/2. * ( neighbours1[ 1 ].CLsExp_p2sigma - neighbours1[ 0 ].CLsExp_p2sigma ) + \
|
384 |
neighbours2[ 0 ].CLsExp_p2sigma + 1/2. * ( neighbours2[ 1 ].CLsExp_p2sigma - neighbours2[ 0 ].CLsExp_p2sigma ) ) /2.
|
385 |
p.CLsExp_p1sigma = ( neighbours1[ 0 ].CLsExp_p1sigma + 1/2. * ( neighbours1[ 1 ].CLsExp_p1sigma - neighbours1[ 0 ].CLsExp_p1sigma ) + \
|
386 |
neighbours2[ 0 ].CLsExp_p1sigma + 1/2. * ( neighbours2[ 1 ].CLsExp_p1sigma - neighbours2[ 0 ].CLsExp_p1sigma ) ) / 2.
|
387 |
p.CLsObs_err = ( neighbours1[ 0 ].CLsObs_err + 1/2. * ( neighbours1[ 1 ].CLsObs_err - neighbours1[ 0 ].CLsObs_err ) + \
|
388 |
neighbours2[ 0 ].CLsObs_err + 1/2. * ( neighbours2[ 1 ].CLsObs_err - neighbours2[ 0 ].CLsObs_err ) ) / 2.
|
389 |
p.CLsExp_err = ( neighbours1[ 0 ].CLsExp_err + 1/2. * ( neighbours1[ 1 ].CLsExp_err - neighbours1[ 0 ].CLsExp_err ) + \
|
390 |
neighbours2[ 0 ].CLsExp_err + 1/2. * ( neighbours2[ 1 ].CLsExp_err - neighbours2[ 0 ].CLsExp_err ) ) / 2.
|
391 |
p.CLsExp_m2sigma_err = ( neighbours1[ 0 ].CLsExp_m2sigma_err + 1/2. * ( neighbours1[ 1 ].CLsExp_m2sigma_err - neighbours1[ 0 ].CLsExp_m2sigma_err ) + \
|
392 |
neighbours2[ 0 ].CLsExp_m2sigma_err + 1/2. * ( neighbours2[ 1 ].CLsExp_m2sigma_err - neighbours2[ 0 ].CLsExp_m2sigma_err ) ) / 2.
|
393 |
p.CLsExp_m1sigma_err = ( neighbours1[ 0 ].CLsExp_m1sigma_err + 1/2. * ( neighbours1[ 1 ].CLsExp_m1sigma_err - neighbours1[ 0 ].CLsExp_m1sigma_err ) + \
|
394 |
neighbours2[ 0 ].CLsExp_m1sigma_err + 1/2. * ( neighbours2[ 1 ].CLsExp_m1sigma_err - neighbours2[ 0 ].CLsExp_m1sigma_err ) ) / 2.
|
395 |
p.CLsExp_p2sigma_err = ( neighbours1[ 0 ].CLsExp_p2sigma_err + 1/2. * ( neighbours1[ 1 ].CLsExp_p2sigma_err - neighbours1[ 0 ].CLsExp_p2sigma_err ) + \
|
396 |
neighbours2[ 0 ].CLsExp_p2sigma_err + 1/2. * ( neighbours2[ 1 ].CLsExp_p2sigma_err - neighbours2[ 0 ].CLsExp_p2sigma_err ) ) / 2.
|
397 |
p.CLsExp_p1sigma_err = ( neighbours1[ 0 ].CLsExp_p1sigma_err + 1/2. * ( neighbours1[ 1 ].CLsExp_p1sigma_err - neighbours1[ 0 ].CLsExp_p1sigma_err ) + \
|
398 |
neighbours2[ 0 ].CLsExp_p1sigma_err + 1/2. * ( neighbours2[ 1 ].CLsExp_p1sigma_err - neighbours2[ 0 ].CLsExp_p1sigma_err ) ) / 2.
|
399 |
pass
|
400 |
|
401 |
def readInSanjaysUncerts( histDict, them0, them12, filename ):
|
402 |
|
403 |
#xbin = histDict[ "Process" ].GetXaxis().FindBin( them0 )
|
404 |
#ybin = histDict[ "Process" ].GetYaxis().FindBin( them12 )
|
405 |
#zSlice = histDict[ "Process" ].ProjectionZ( "_pz", xbin, xbin, ybin, ybin )
|
406 |
|
407 |
|
408 |
### 0 1 2 3 4 5 6 7 8 9
|
409 |
### ng ns nn ll sb ss tb bb gg sg
|
410 |
#pDict = {}
|
411 |
#sumbin = histDict[ "ScanAnalyzerAllMC" ].FindBin( them0, them12 )
|
412 |
#sum = histDict[ "ScanAnalyzerAllMC" ].GetBinContent( sumbin )
|
413 |
#for zbin in range( 0, zSlice.GetNbinsX() ):
|
414 |
# pDict[ zbin ] = zSlice.GetBinContent( zbin )
|
415 |
|
416 |
# #### percentage of decays
|
417 |
# pDict[ zbin ] /= sum
|
418 |
# pass
|
419 |
|
420 |
#### read in uncertainties
|
421 |
uDict = {}
|
422 |
f = open( filename, "r" )
|
423 |
sum = 0
|
424 |
uncert = 0
|
425 |
notfound = True
|
426 |
for line in f.readlines():
|
427 |
### ignore first line
|
428 |
#if re.search( "Sub-processes", line ):
|
429 |
if re.search( "Interactions", line ):
|
430 |
continue
|
431 |
lineSnippets = line.split( "|" )
|
432 |
pointDefs = lineSnippets[ 1 ].split( " " )
|
433 |
m0 = int( pointDefs[ 6 ] )
|
434 |
if not m0 == them0:
|
435 |
continue
|
436 |
m12 = int( pointDefs[ 9 ] )
|
437 |
if not m12 == them12:
|
438 |
continue
|
439 |
notfound = False
|
440 |
### 2 3 4 5 6 7 8 9 10 11
|
441 |
### ng ns nn ll sb ss tb bb gg sg
|
442 |
for u in range( 2, 12 ):
|
443 |
vals = lineSnippets[ u ].split( " pm " )
|
444 |
#uDict[ u ] = ( float( vals[ 1 ] )/ float( vals [ 0 ] * pDict[ u - 2 ] * float( vals [ 0 ] )**2
|
445 |
#uncert += ( float( vals[ 1 ] )/ float( vals [ 0 ] ) * pDict[ u - 2 ] * float( vals [ 0 ] ) )**2
|
446 |
#sum += pDict[ u - 2 ] * float( vals [ 0 ] )
|
447 |
uDict[ u ] = float( vals[ 1 ] )
|
448 |
sum += float( vals [ 0 ] )
|
449 |
pass
|
450 |
pass
|
451 |
f.close()
|
452 |
uncert = 0
|
453 |
### add up lineraly because of correlation
|
454 |
if not notfound:
|
455 |
for i in range( 2, 12 ):
|
456 |
uncert += uDict[ i ]
|
457 |
pass
|
458 |
|
459 |
return uncert / sum
|
460 |
return None
|
461 |
|
462 |
def getRelTheoUncert( m0, m12, histDict ):
|
463 |
#### do something here
|
464 |
|
465 |
|
466 |
### toy uncerts
|
467 |
#nloUp = 0.2
|
468 |
#nloDn = 0.3
|
469 |
#pdfUp = 0.12
|
470 |
#pdfDn = 0.12
|
471 |
|
472 |
#### nlo
|
473 |
#bin = histDict[ "RateRel0NLO2" ].FindBin( m0, m12 )
|
474 |
#nloUp = histDict[ "RateRel0NLO2" ].GetBinContent( bin )
|
475 |
#nloDn = histDict[ "RateRel0NLO05" ].GetBinContent( bin )
|
476 |
#pdfUp = histDict[ "RateRel0PDFxsecUncert" ].GetBinContent( bin )
|
477 |
#pdfDn = pdfUp
|
478 |
|
479 |
|
480 |
#print "m0=", m0, "m12=", m12, " nloUp=", nloUp, " pdfUp=", pdfUp
|
481 |
|
482 |
#up = math.sqrt( nloUp**2 + pdfUp**2 )
|
483 |
#dn = math.sqrt( nloDn**2 + pdfDn**2 )
|
484 |
|
485 |
filename = "./theoUncerts/combined_cross_section_Errmsugra_m0_m12_10_0_1.txt"
|
486 |
up = readInSanjaysUncerts( histDict, m0, m12, filename )
|
487 |
dn = up
|
488 |
|
489 |
#print "m0=", m0, "m12=", m12, " Up=", up
|
490 |
|
491 |
return up, dn
|
492 |
|
493 |
def fillTheoErrPlot( hist ):
|
494 |
filename = "./theoUncerts/combined_cross_section_Errmsugra_m0_m12_10_0_1.txt"
|
495 |
for m0 in range( 220, 3020, 20 ):
|
496 |
for m12 in range( 100, 1020, 20 ):
|
497 |
val = readInSanjaysUncerts( {}, m0, m12, filename )
|
498 |
bin = hist.FindBin( m0, m12 )
|
499 |
if not val == None:
|
500 |
hist.SetBinContent( bin, val )
|
501 |
pass
|
502 |
pass
|
503 |
pass
|
504 |
pass
|
505 |
|
506 |
def makeStandardPlots( points, file, lumi ):
|
507 |
|
508 |
histDict = {}
|
509 |
|
510 |
#### nlo uncert
|
511 |
histDict.update( Scan.readInScanHists( file, list=[ "ScanAnalyzerNLO2",
|
512 |
"ScanAnalyzerPreNLO2",
|
513 |
"ScanAnalyzerNLO05",
|
514 |
"ScanAnalyzerPreNLO05",
|
515 |
"ScanAnalyzerNLO",
|
516 |
"ScanAnalyzerPreNLO",
|
517 |
"ScanAnalyzerAllNLO",
|
518 |
"ScanAnalyzerAllMC",
|
519 |
"ScanAnalyzerPDFxsec",
|
520 |
"ScanAnalyzerPDFxsecUncert",
|
521 |
] ) )
|
522 |
Scan.getRateHist( histDict, "NLO", lumi=lumi, Type="" )
|
523 |
Scan.getRateHist( histDict, "NLO05", lumi=lumi, Type="" )
|
524 |
Scan.getRateHist( histDict, "NLO2", lumi=lumi, Type="" )
|
525 |
Scan.getRelRate( histDict, "NLO05", "NLO", Type="" )
|
526 |
Scan.getRelRate( histDict, "NLO2", "NLO", Type="" )
|
527 |
Scan.getRateHist( histDict, "PDFxsec", lumi=lumi, Type="" )
|
528 |
Scan.getRateHist( histDict, "PDFxsecUncert", lumi=lumi, Type="" )
|
529 |
Scan.getRelRate( histDict, "PDFxsecUncert", "PDFxsec", Type="" )
|
530 |
|
531 |
histDict[ "Process" ] = file.Get( "ScanAnalyzerAllNLO/process" )
|
532 |
histDict[ "Process" ].SetDirectory( 0 )
|
533 |
|
534 |
### now create first plots ( cMSSM )
|
535 |
### evaluate later
|
536 |
nBinsX = 140
|
537 |
nBinsY = 46
|
538 |
xmin = 210.
|
539 |
xmax = 3010.
|
540 |
ymin = 90.
|
541 |
ymax = 1010.
|
542 |
h_obs = ROOT.TH2F( "obs", "obs", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
543 |
h_obs_eval = ROOT.TH2F( "obsEv", "obsEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
544 |
h_exp = ROOT.TH2F( "exp", "exp", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
545 |
h_exp_eval = ROOT.TH2F( "expEv", "expEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
546 |
h_exp_p1 = ROOT.TH2F( "expP1", "expP1", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
547 |
h_exp_m1 = ROOT.TH2F( "expM1", "expM1", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
548 |
h_exp_p1_eval = ROOT.TH2F( "expP1Ev", "expP1Ev", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
549 |
h_exp_m1_eval = ROOT.TH2F( "expM1Ev", "expM1Ev", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
550 |
|
551 |
h_inacc = ROOT.TH2F( "inacc", "inacc", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
552 |
h_inacc.SetFillColor( ROOT.kRed )
|
553 |
|
554 |
#### for the theretical uncertainties
|
555 |
h_obs_theoUp_eval = ROOT.TH2F( "obsTheoUpEv", "obsTheoUpEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
556 |
h_obs_theoDn_eval = ROOT.TH2F( "obsTheoDnEv", "obsTheoDnEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
557 |
h_exp_theoUp_eval = ROOT.TH2F( "expTheoUpEv", "expTheoUpEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
558 |
h_exp_theoDn_eval = ROOT.TH2F( "expTheoDnEv", "expTheoDnEv", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
559 |
h_obs_theoUp = ROOT.TH2F( "obsTheoUp", "obsTheoUp", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
560 |
h_obs_theoDn = ROOT.TH2F( "obsTheoDn", "obsTheoDn", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
561 |
h_exp_theoUp = ROOT.TH2F( "expTheoUp", "expTheoUp", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
562 |
h_exp_theoDn = ROOT.TH2F( "expTheoDn", "expTheoDn", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
563 |
|
564 |
h_theorel = ROOT.TH2F( "reltheo", "reltheo", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
565 |
|
566 |
#for xbin in range( 1, h_obs.GetNbinsX() + 1 ):
|
567 |
# for ybin in range( 1, h_obs.GetNbinsY() + 1 ):
|
568 |
for p in points:
|
569 |
|
570 |
if p.CLsObs == 0:
|
571 |
continue
|
572 |
|
573 |
bin = h_obs.FindBin( p.m0, p.m12 )
|
574 |
|
575 |
#if p.acceptable:
|
576 |
|
577 |
#### theoretical uncerts
|
578 |
relUp, relDn = getRelTheoUncert( p.m0, p.m12, histDict )
|
579 |
|
580 |
h_obs.SetBinContent( bin, p.CLsObs )
|
581 |
h_exp.SetBinContent( bin, p.CLsExp )
|
582 |
h_exp_m1.SetBinContent( bin, p.CLsExp_m1sigma )
|
583 |
h_exp_p1.SetBinContent( bin, p.CLsExp_p1sigma )
|
584 |
h_obs_theoUp.SetBinContent( bin, p.CLsObs * ( 1 + relUp ) )
|
585 |
h_obs_theoDn.SetBinContent( bin, p.CLsObs * ( 1 - relUp ) )
|
586 |
h_exp_theoUp.SetBinContent( bin, p.CLsExp * ( 1 + relUp ) )
|
587 |
h_exp_theoDn.SetBinContent( bin, p.CLsExp * ( 1 - relUp ) )
|
588 |
#h_theorel.SetBinContent( bin, relUp )
|
589 |
|
590 |
####### temporary Asymptotoc!
|
591 |
#print "######################### WARNING! Using Asymptotic !! ############################"
|
592 |
|
593 |
val = 0.01
|
594 |
if p.CLsObs > 1:
|
595 |
val = 1.
|
596 |
pass
|
597 |
if not p.CLsObs == 0:
|
598 |
h_obs_eval.SetBinContent( bin, val )
|
599 |
pass
|
600 |
val = 0.01
|
601 |
if p.CLsExp > 1:
|
602 |
val = 1.
|
603 |
pass
|
604 |
if not p.CLsExp == 0:
|
605 |
h_exp_eval.SetBinContent( bin, val )
|
606 |
pass
|
607 |
val = 0.01
|
608 |
if p.CLsExp_m1sigma > 1:
|
609 |
val = 1
|
610 |
pass
|
611 |
if not p.CLsExp_m1sigma == 0:
|
612 |
h_exp_m1_eval.SetBinContent( bin, val )
|
613 |
pass
|
614 |
val = 0.01
|
615 |
if p.CLsExp_p1sigma > 1:
|
616 |
val = 1
|
617 |
pass
|
618 |
if not p.CLsExp_p1sigma == 0:
|
619 |
h_exp_p1_eval.SetBinContent( bin, val )
|
620 |
pass
|
621 |
|
622 |
if not p.acceptable:
|
623 |
h_inacc.SetBinContent( bin, 40 )
|
624 |
pass
|
625 |
|
626 |
###### now, the theory errs
|
627 |
val = 0.01
|
628 |
if p.CLsObs * ( 1 + relUp ) > 1:
|
629 |
val = 1.
|
630 |
pass
|
631 |
if not p.CLsObs * ( 1 + relUp ) == 0:
|
632 |
h_obs_theoUp_eval.SetBinContent( bin, val )
|
633 |
pass
|
634 |
val = 0.01
|
635 |
if p.CLsObs * ( 1 - relDn ) > 1:
|
636 |
val = 1.
|
637 |
pass
|
638 |
if not p.CLsObs * ( 1 - relDn ) == 0:
|
639 |
h_obs_theoDn_eval.SetBinContent( bin, val )
|
640 |
pass
|
641 |
val = 0.01
|
642 |
if p.CLsExp * ( 1 + relUp ) > 1:
|
643 |
val = 1.
|
644 |
pass
|
645 |
if not p.CLsExp * ( 1 + relUp ) == 0:
|
646 |
h_exp_theoUp_eval.SetBinContent( bin, val )
|
647 |
pass
|
648 |
val = 0.01
|
649 |
if p.CLsExp * ( 1 - relDn ) > 1:
|
650 |
val = 1.
|
651 |
pass
|
652 |
if not p.CLsExp * ( 1 - relDn ) == 0:
|
653 |
h_exp_theoDn_eval.SetBinContent( bin, val )
|
654 |
pass
|
655 |
|
656 |
pass
|
657 |
|
658 |
histDict[ "Obs" ] = h_obs.Clone()
|
659 |
histDict[ "ObsEval" ] = h_obs_eval.Clone()
|
660 |
histDict[ "Exp" ] = h_exp.Clone()
|
661 |
histDict[ "ExpEval" ] = h_exp_eval.Clone()
|
662 |
histDict[ "Inacc" ] = h_inacc.Clone()
|
663 |
histDict[ "ExpM1" ] = h_exp_m1.Clone()
|
664 |
histDict[ "ExpP1" ] = h_exp_p1.Clone()
|
665 |
histDict[ "ExpM1Eval" ] = h_exp_m1_eval.Clone()
|
666 |
histDict[ "ExpP1Eval" ] = h_exp_p1_eval.Clone()
|
667 |
histDict[ "ObsTheoUpEval" ] = h_obs_theoUp_eval.Clone()
|
668 |
histDict[ "ObsTheoDnEval" ] = h_obs_theoDn_eval.Clone()
|
669 |
histDict[ "ExpTheoUpEval" ] = h_exp_theoUp_eval.Clone()
|
670 |
histDict[ "ExpTheoDnEval" ] = h_exp_theoDn_eval.Clone()
|
671 |
histDict[ "ObsTheoUp" ] = h_obs_theoUp.Clone()
|
672 |
histDict[ "ObsTheoDn" ] = h_obs_theoDn.Clone()
|
673 |
histDict[ "ExpTheoUp" ] = h_exp_theoUp.Clone()
|
674 |
histDict[ "ExpTheoDn" ] = h_exp_theoDn.Clone()
|
675 |
histDict[ "TheoRel" ] = h_theorel.Clone()
|
676 |
#fillTheoErrPlot( histDict[ "TheoRel" ] )
|
677 |
|
678 |
#### now smooth the 2D non evaluated plots
|
679 |
smoo = 3
|
680 |
histDict[ "ObsFullSmooth" ] = h_obs.Clone()
|
681 |
histDict[ "ObsFullSmooth" ].Smooth( smoo )
|
682 |
histDict[ "ObsFullSmooth" ].SetName( "ObsFullSmooth" )
|
683 |
histDict[ "ExpFullSmooth" ] = h_exp.Clone()
|
684 |
histDict[ "ExpFullSmooth" ].Smooth( smoo )
|
685 |
histDict[ "ExpFullSmooth" ].SetName( "ExpFullSmooth" )
|
686 |
histDict[ "ExpM1FullSmooth" ] = h_exp_m1.Clone()
|
687 |
histDict[ "ExpM1FullSmooth" ].Smooth( smoo )
|
688 |
histDict[ "ExpM1FullSmooth" ].SetName( "ExpM1FullSmooth" )
|
689 |
histDict[ "ExpP1FullSmooth" ] = h_exp_p1.Clone()
|
690 |
histDict[ "ExpP1FullSmooth" ].Smooth( smoo )
|
691 |
histDict[ "ExpP1FullSmooth" ].SetName( "ExpP1FullSmooth" )
|
692 |
histDict[ "ObsTheoUpFullSmooth" ] = h_obs_theoUp.Clone()
|
693 |
histDict[ "ObsTheoUpFullSmooth" ].Smooth( smoo )
|
694 |
histDict[ "ObsTheoUpFullSmooth" ].SetName( "ObsTheoUpFullSmooth" )
|
695 |
histDict[ "ObsTheoDnFullSmooth" ] = h_obs_theoDn.Clone()
|
696 |
histDict[ "ObsTheoDnFullSmooth" ].Smooth( smoo )
|
697 |
histDict[ "ObsTheoDnFullSmooth" ].SetName( "ObsTheoDnFullSmooth" )
|
698 |
histDict[ "ExpTheoUpFullSmooth" ] = h_exp_theoUp.Clone()
|
699 |
histDict[ "ExpTheoUpFullSmooth" ].Smooth( smoo )
|
700 |
histDict[ "ExpTheoUpFullSmooth" ].SetName( "ExpTheoUpFullSmooth" )
|
701 |
histDict[ "ExpTheoDnFullSmooth" ] = h_exp_theoDn.Clone()
|
702 |
histDict[ "ExpTheoDnFullSmooth" ].Smooth( smoo )
|
703 |
histDict[ "ExpTheoDnFullSmooth" ].SetName( "ExpTheoDnFullSmooth" )
|
704 |
|
705 |
|
706 |
h_obs_smoo = ROOT.TH2F( "obsSmooth", "obsSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
707 |
h_obs_smoo_eval = ROOT.TH2F( "obsSmoothEval", "obsSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
708 |
h_exp_smoo = ROOT.TH2F( "expSmooth", "expSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
709 |
h_exp_smoo_eval = ROOT.TH2F( "expSmoothEval", "expSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
710 |
h_exp_m1_smoo = ROOT.TH2F( "expM1Smooth", "expM1Smooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
711 |
h_exp_m1_smoo_eval = ROOT.TH2F( "expM1SmoothEval", "expM1SmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
712 |
h_exp_p1_smoo = ROOT.TH2F( "expP1Smooth", "expP1Smooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
713 |
h_exp_p1_smoo_eval = ROOT.TH2F( "expP1SmoothEval", "expP1SmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
714 |
h_obs_theoUp_smoo = ROOT.TH2F( "obsTheoUpSmooth", "obsTheoUpSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
715 |
h_obs_theoUp_smoo_eval = ROOT.TH2F( "obsTheoUpSmoothEval", "obsTheoUpSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
716 |
h_obs_theoDn_smoo = ROOT.TH2F( "obsTheoDnSmooth", "obsTheoDnSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
717 |
h_obs_theoDn_smoo_eval = ROOT.TH2F( "obsTheoDnSmoothEval", "obsTheoDnSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
718 |
h_exp_theoUp_smoo = ROOT.TH2F( "expTheoUpSmooth", "expTheoUpSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
719 |
h_exp_theoUp_smoo_eval = ROOT.TH2F( "expTheoUpSmoothEval", "expTheoUpSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
720 |
h_exp_theoDn_smoo = ROOT.TH2F( "expTheoDnSmooth", "expTheoDnSmooth", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
721 |
h_exp_theoDn_smoo_eval = ROOT.TH2F( "expTheoDnSmoothEval", "expTheoDnSmoothEval", nBinsX, xmin, xmax, nBinsY, ymin, ymax )
|
722 |
#### refill smoothing plots
|
723 |
#nBinsX = 140
|
724 |
#nBinsY = 46
|
725 |
#xmin = 210.
|
726 |
#xmax = 3010.
|
727 |
#ymin = 90.
|
728 |
#ymax = 1010.
|
729 |
for xval in range( xmin, xmax + ( xmax - xmin )/ ( nBinsX * 2 ), ( xmax - xmin )/ ( nBinsX ) ):
|
730 |
for yval in range( ymin, ymax + ( ymax - ymin )/ ( nBinsY * 2 ), ( ymax - ymin )/ ( nBinsY ) ):
|
731 |
bin = histDict[ "ObsFullSmooth" ].FindBin( xval, yval )
|
732 |
if yval <= 340 or xval > 460:
|
733 |
h_obs_smoo.SetBinContent( bin, histDict[ "ObsFullSmooth" ].GetBinContent( bin ) )
|
734 |
h_exp_smoo.SetBinContent( bin, histDict[ "ExpFullSmooth" ].GetBinContent( bin ) )
|
735 |
h_exp_m1_smoo.SetBinContent( bin, histDict[ "ExpM1FullSmooth" ].GetBinContent( bin ) )
|
736 |
h_exp_p1_smoo.SetBinContent( bin, histDict[ "ExpP1FullSmooth" ].GetBinContent( bin ) )
|
737 |
h_obs_theoUp_smoo.SetBinContent( bin, histDict[ "ObsTheoUpFullSmooth" ].GetBinContent( bin ) )
|
738 |
h_obs_theoDn_smoo.SetBinContent( bin, histDict[ "ObsTheoDnFullSmooth" ].GetBinContent( bin ) )
|
739 |
h_exp_theoUp_smoo.SetBinContent( bin, histDict[ "ExpTheoUpFullSmooth" ].GetBinContent( bin ) )
|
740 |
h_exp_theoDn_smoo.SetBinContent( bin, histDict[ "ExpTheoDnFullSmooth" ].GetBinContent( bin ) )
|
741 |
|
742 |
#####
|
743 |
val = 0.01
|
744 |
if histDict[ "ObsFullSmooth" ].GetBinContent( bin ) > 1:
|
745 |
val = 1
|
746 |
pass
|
747 |
h_obs_smoo_eval.SetBinContent( bin, val )
|
748 |
val = 0.01
|
749 |
if histDict[ "ExpFullSmooth" ].GetBinContent( bin ) > 1:
|
750 |
val = 1
|
751 |
pass
|
752 |
h_exp_smoo_eval.SetBinContent( bin, val )
|
753 |
val = 0.01
|
754 |
if histDict[ "ExpM1FullSmooth" ].GetBinContent( bin ) > 1:
|
755 |
val = 1
|
756 |
pass
|
757 |
h_exp_m1_smoo_eval.SetBinContent( bin, val )
|
758 |
val = 0.01
|
759 |
if histDict[ "ExpP1FullSmooth" ].GetBinContent( bin ) > 1:
|
760 |
val = 1
|
761 |
pass
|
762 |
h_exp_p1_smoo_eval.SetBinContent( bin, val )
|
763 |
val = 0.01
|
764 |
if histDict[ "ObsTheoUpFullSmooth" ].GetBinContent( bin ) > 1:
|
765 |
val = 1
|
766 |
pass
|
767 |
h_obs_theoUp_smoo_eval.SetBinContent( bin, val )
|
768 |
val = 0.01
|
769 |
if histDict[ "ObsTheoDnFullSmooth" ].GetBinContent( bin ) > 1:
|
770 |
val = 1
|
771 |
pass
|
772 |
h_obs_theoDn_smoo_eval.SetBinContent( bin, val )
|
773 |
val = 0.01
|
774 |
if histDict[ "ExpTheoUpFullSmooth" ].GetBinContent( bin ) > 1:
|
775 |
val = 1
|
776 |
pass
|
777 |
h_exp_theoUp_smoo_eval.SetBinContent( bin, val )
|
778 |
val = 0.01
|
779 |
if histDict[ "ExpTheoDnFullSmooth" ].GetBinContent( bin ) > 1:
|
780 |
val = 1
|
781 |
pass
|
782 |
h_exp_theoDn_smoo_eval.SetBinContent( bin, val )
|
783 |
|
784 |
else:
|
785 |
h_obs_smoo.SetBinContent( bin, histDict[ "Obs" ].GetBinContent( bin ) )
|
786 |
h_exp_smoo.SetBinContent( bin, histDict[ "Exp" ].GetBinContent( bin ) )
|
787 |
h_exp_m1_smoo.SetBinContent( bin, histDict[ "ExpM1" ].GetBinContent( bin ) )
|
788 |
h_exp_p1_smoo.SetBinContent( bin, histDict[ "ExpP1" ].GetBinContent( bin ) )
|
789 |
h_obs_theoUp_smoo.SetBinContent( bin, histDict[ "ObsTheoUp" ].GetBinContent( bin ) )
|
790 |
h_obs_theoDn_smoo.SetBinContent( bin, histDict[ "ObsTheoDn" ].GetBinContent( bin ) )
|
791 |
h_exp_theoUp_smoo.SetBinContent( bin, histDict[ "ExpTheoUp" ].GetBinContent( bin ) )
|
792 |
h_exp_theoDn_smoo.SetBinContent( bin, histDict[ "ExpTheoDn" ].GetBinContent( bin ) )
|
793 |
|
794 |
####
|
795 |
val = 0.01
|
796 |
if histDict[ "Obs" ].GetBinContent( bin ) > 1:
|
797 |
val = 1
|
798 |
pass
|
799 |
h_obs_smoo_eval.SetBinContent( bin, val )
|
800 |
val = 0.01
|
801 |
if histDict[ "Exp" ].GetBinContent( bin ) > 1:
|
802 |
val = 1
|
803 |
pass
|
804 |
h_exp_smoo_eval.SetBinContent( bin, val )
|
805 |
val = 0.01
|
806 |
if histDict[ "ExpM1" ].GetBinContent( bin ) > 1:
|
807 |
val = 1
|
808 |
pass
|
809 |
h_exp_m1_smoo_eval.SetBinContent( bin, val )
|
810 |
val = 0.01
|
811 |
if histDict[ "ExpP1" ].GetBinContent( bin ) > 1:
|
812 |
val = 1
|
813 |
pass
|
814 |
h_exp_p1_smoo_eval.SetBinContent( bin, val )
|
815 |
val = 0.01
|
816 |
if histDict[ "ObsTheoUp" ].GetBinContent( bin ) > 1:
|
817 |
val = 1
|
818 |
pass
|
819 |
h_obs_theoUp_smoo_eval.SetBinContent( bin, val )
|
820 |
val = 0.01
|
821 |
if histDict[ "ObsTheoDn" ].GetBinContent( bin ) > 1:
|
822 |
val = 1
|
823 |
pass
|
824 |
h_obs_theoDn_smoo_eval.SetBinContent( bin, val )
|
825 |
val = 0.01
|
826 |
if histDict[ "ExpTheoUp" ].GetBinContent( bin ) > 1:
|
827 |
val = 1
|
828 |
pass
|
829 |
h_exp_theoUp_smoo_eval.SetBinContent( bin, val )
|
830 |
val = 0.01
|
831 |
if histDict[ "ExpTheoDn" ].GetBinContent( bin ) > 1:
|
832 |
val = 1
|
833 |
pass
|
834 |
h_exp_theoDn_smoo_eval.SetBinContent( bin, val )
|
835 |
pass
|
836 |
pass
|
837 |
pass
|
838 |
|
839 |
histDict[ "ObsSmooth" ] = h_obs_smoo.Clone()
|
840 |
histDict[ "ObsSmoothEval" ] = h_obs_smoo_eval.Clone()
|
841 |
histDict[ "ExpSmooth" ] = h_exp_smoo.Clone()
|
842 |
histDict[ "ExpSmoothEval" ] = h_exp_smoo_eval.Clone()
|
843 |
histDict[ "ExpM1Smooth" ] = h_exp_m1_smoo.Clone()
|
844 |
histDict[ "ExpM1SmoothEval" ] = h_exp_m1_smoo_eval.Clone()
|
845 |
histDict[ "ExpP1Smooth" ] = h_exp_p1_smoo.Clone()
|
846 |
histDict[ "ExpP1SmoothEval" ] = h_exp_p1_smoo_eval.Clone()
|
847 |
histDict[ "ObsTheoUpSmooth" ] = h_obs_theoUp_smoo.Clone()
|
848 |
histDict[ "ObsTheoUpSmoothEval" ] = h_obs_theoUp_smoo_eval.Clone()
|
849 |
histDict[ "ObsTheoDnSmooth" ] = h_obs_theoDn_smoo.Clone()
|
850 |
histDict[ "ObsTheoDnSmoothEval" ] = h_obs_theoDn_smoo_eval.Clone()
|
851 |
histDict[ "ExpTheoUpSmooth" ] = h_exp_theoUp_smoo.Clone()
|
852 |
histDict[ "ExpTheoUpSmoothEval" ] = h_exp_theoUp_smoo_eval.Clone()
|
853 |
histDict[ "ExpTheoDnSmooth" ] = h_exp_theoDn_smoo.Clone()
|
854 |
histDict[ "ExpTheoDnSmoothEval" ] = h_exp_theoDn_smoo_eval.Clone()
|
855 |
|
856 |
return histDict
|
857 |
|
858 |
def getContours( histDict, hist="ObsEval" ):
|
859 |
obsClone = histDict[ hist ].Clone()
|
860 |
obsClone.SetContour( 3 )
|
861 |
### needed
|
862 |
obsClone.Draw( "CONT Z List" )
|
863 |
### needed, else the contous object is not found
|
864 |
ROOT.gPad.Update()
|
865 |
|
866 |
contours = ROOT.gROOT.GetListOfSpecials().FindObject( "contours" )
|
867 |
#print "contours size: ", contours.GetSize()
|
868 |
|
869 |
#print "---------------", hist, "------------------"
|
870 |
resultingGraphs = []
|
871 |
for i in range( 0, contours.GetSize() ):
|
872 |
cList = contours.At( i )
|
873 |
#print "i=", i, "cList size=", cList.GetSize()
|
874 |
curve = cList.First()
|
875 |
if curve:
|
876 |
#print type( curve )
|
877 |
resultingGraphs.append( curve.Clone() )
|
878 |
pass
|
879 |
for j in range( 0, cList.GetSize() ):
|
880 |
curve = cList.After( curve )
|
881 |
if curve:
|
882 |
#print type( curve )
|
883 |
resultingGraphs.append( curve.Clone() )
|
884 |
pass
|
885 |
pass
|
886 |
pass
|
887 |
#curv.Draw( "AP" )
|
888 |
#histDict[ "test" ] = obsClone
|
889 |
### sorting ...
|
890 |
## not done yet
|
891 |
#print resultingGraphs
|
892 |
histDict[ "contourList" + hist ] = resultingGraphs
|
893 |
#print "===== hist=", hist, " ", type( histDict[ "contourList" + hist ][ 0 ] )
|
894 |
pass
|
895 |
|
896 |
def drawContourList( histDict, cDict, hist="ObsEval" ):
|
897 |
for i in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
898 |
cDict[ "cList" + str( i ) ] = ROOT.TCanvas( "cList" + str( i ), "cList" + str( i ) )
|
899 |
cDict[ "cList" + str( i ) ].cd()
|
900 |
histDict[ "contourList" + hist ][ i ].Draw( "Al" )
|
901 |
pass
|
902 |
pass
|
903 |
|
904 |
def drawAllContours( histDict, cDict, hist="ObsEval" ):
|
905 |
cDict[ "cList" ] = ROOT.TCanvas( "cList" , "cList" )
|
906 |
cDict[ "cList" ].cd()
|
907 |
### find graph with most points:
|
908 |
indexPoints = 0
|
909 |
nPoints = 0
|
910 |
for j in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
911 |
if histDict[ "contourList" + hist ][ j ].GetN() > nPoints:
|
912 |
nPoints = histDict[ "contourList" + hist ][ j ].GetN()
|
913 |
indexPoints = j
|
914 |
pass
|
915 |
pass
|
916 |
histDict[ "contourList" + hist ][ indexPoints ].Draw( "Al" )
|
917 |
histDict[ "contourList" + hist ][ indexPoints ].SetLineColor( ROOT.kAzure - 6 )
|
918 |
histDict[ "contourList" + hist ][ indexPoints ].SetLineWidth( 3 )
|
919 |
for i in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
920 |
histDict[ "contourList" + hist ][ i ].SetLineColor( ROOT.kAzure - 6 )
|
921 |
histDict[ "contourList" + hist ][ i ].SetLineWidth( 3 )
|
922 |
if i == indexPoints:
|
923 |
continue
|
924 |
else:
|
925 |
histDict[ "contourList" + hist ][ i ].Draw( "samel" )
|
926 |
pass
|
927 |
pass
|
928 |
pass
|
929 |
|
930 |
## def findPointIndex( graph, tuple ):
|
931 |
## for i in range( 0, graph.GetN() ):
|
932 |
## x = ROOT.Double( 0 )
|
933 |
## y = ROOT.Double( 0 )
|
934 |
## graph.GetPoint( i, x, y )
|
935 |
## if ( x, y ) == tuple:
|
936 |
## return i
|
937 |
## pass
|
938 |
## return -1
|
939 |
|
940 |
def smooth( graph, N, ymin = 280 ):
|
941 |
old = graph.Clone()
|
942 |
if N > 2 * graph.GetN():
|
943 |
N = 2 * graph.GetN() - 1
|
944 |
pass
|
945 |
#print "N=", N
|
946 |
|
947 |
gauss = [ 0 ] *N
|
948 |
sigma = N / 4.
|
949 |
|
950 |
#print "sigma=", sigma
|
951 |
|
952 |
sum = 0
|
953 |
lim = N / 2.
|
954 |
|
955 |
#print "lim=", lim
|
956 |
|
957 |
fb = ROOT.TF1( "fb", "gaus(0)", -lim, lim )
|
958 |
fb.SetParameter( 0, 1. / ( math.sqrt( 2 * 3.1415 ) * sigma ) )
|
959 |
fb.SetParameter( 1, 0 )
|
960 |
fb.SetParameter( 2, sigma )
|
961 |
for i in range( 0, N ):
|
962 |
gauss[i] = fb.Integral( -lim + i, -lim + i + 1 )
|
963 |
sum += gauss[ i ]
|
964 |
pass
|
965 |
#print "sum=", sum
|
966 |
|
967 |
for i in range( 0, N ):
|
968 |
gauss[ i ] /= sum
|
969 |
#print "gauss[ i ]=", gauss[ i ]
|
970 |
pass
|
971 |
|
972 |
#print "i-loop"
|
973 |
for i in range( 0, graph.GetN() ):
|
974 |
#print "\ti=", i
|
975 |
avy = 0.
|
976 |
avx = 0.
|
977 |
|
978 |
### use only 3 points to each side
|
979 |
### if m0 < 450
|
980 |
x1 = ROOT.Double( 0 )
|
981 |
y1 = ROOT.Double( 0 )
|
982 |
old.GetPoint( i, x1, y1 )
|
983 |
##if x1 == 0:
|
984 |
## continue
|
985 |
#if y1 > 460:
|
986 |
# r = 6
|
987 |
#elif x1 < 450:
|
988 |
# r = 6
|
989 |
# pass
|
990 |
#else :
|
991 |
r = N
|
992 |
|
993 |
x = ROOT.Double( 0 )
|
994 |
x0 = 0
|
995 |
y = ROOT.Double( 0 )
|
996 |
points = 0
|
997 |
#print "\tj-loop"
|
998 |
for j in range( i - r / 2,i + r / 2 ):
|
999 |
#print "\t\tj=", j
|
1000 |
|
1001 |
if x1 == 0:
|
1002 |
continue
|
1003 |
|
1004 |
if j < 0:
|
1005 |
old.GetPoint( 0, x, y )
|
1006 |
#old.GetPoint( 1, x, y )
|
1007 |
elif j >= graph.GetN():
|
1008 |
old.GetPoint( old.GetN() - 1, x, y )
|
1009 |
else:
|
1010 |
old.GetPoint( j, x, y )
|
1011 |
pass
|
1012 |
#print "\t\tx=", x, " y=", y
|
1013 |
|
1014 |
if i == j:
|
1015 |
x0 = x1
|
1016 |
#y0 = y ####?
|
1017 |
pass
|
1018 |
avy += y * gauss[ points ]
|
1019 |
avx += x * gauss[ points ]
|
1020 |
points += 1
|
1021 |
|
1022 |
#if x == 0:
|
1023 |
# break
|
1024 |
|
1025 |
pass
|
1026 |
|
1027 |
#print "\tx=", x1, " y=", y1
|
1028 |
#print "\tavx=", avx, " avy=", avy
|
1029 |
if x1 == 0:
|
1030 |
graph.SetPoint( i, x1, y1 )
|
1031 |
#print "SetPoint(", x1, y1, ")"
|
1032 |
|
1033 |
elif y1 == ymin:
|
1034 |
graph.SetPoint( i, avx, y1 )
|
1035 |
#elif avy < ymin:
|
1036 |
# graph.SetPoint( i, avx, y1 )
|
1037 |
|
1038 |
#elif x > 426. and x < 427. and y > 399. and y < 460.: ####temporary?
|
1039 |
# graph.SetPoint( i, x, y )
|
1040 |
elif i - r / 2 < 0 or i + r / 2 >= graph.GetN():
|
1041 |
#graph.SetPoint( i, x0, avy )
|
1042 |
graph.SetPoint( i, avx, avy )
|
1043 |
#print "SetPoint(", x0, avy, ")"
|
1044 |
#graph.SetPoint( i, x0, y0 ) ###?
|
1045 |
#elif avx < 250:
|
1046 |
# graph.SetPoint( i, x0, avy )
|
1047 |
else:
|
1048 |
graph.SetPoint( i, avx, avy )
|
1049 |
#print "SetPoint(", avx, avy, ")"
|
1050 |
pass
|
1051 |
pass
|
1052 |
pass
|
1053 |
|
1054 |
|
1055 |
def getFullContour( histDict, hist="ObsEval", color=ROOT.kAzure - 6, xmax=790, ymax=510, ymin = 280 ):
|
1056 |
#cDict[ "cList" ] = ROOT.TCanvas( "cList" , "cList" )
|
1057 |
#cDict[ "cList" ].cd()
|
1058 |
### find graph with most points:
|
1059 |
print "-------------", hist, "--------------------"
|
1060 |
indexPoints = 0
|
1061 |
nPoints = 0
|
1062 |
for j in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
1063 |
#print type( histDict[ "contourList" + hist ][ j ] )
|
1064 |
if histDict[ "contourList" + hist ][ j ].GetN() > nPoints:
|
1065 |
nPoints = histDict[ "contourList" + hist ][ j ].GetN()
|
1066 |
indexPoints = j
|
1067 |
pass
|
1068 |
pass
|
1069 |
### make new graph
|
1070 |
#get the x,y tuple first
|
1071 |
pointTuples = []
|
1072 |
for i in range( 0, histDict[ "contourList" + hist ][ indexPoints ].GetN() ):
|
1073 |
x = ROOT.Double( 0 )
|
1074 |
y = ROOT.Double( 0 )
|
1075 |
histDict[ "contourList" + hist ][ indexPoints ].GetPoint( i, x, y )
|
1076 |
pointTuples.append( ( x,y ) )
|
1077 |
pass
|
1078 |
## now find the index of the list, where y is greatest and x is smallest
|
1079 |
# now find the index of the list, where x is greatest and y is smallest
|
1080 |
#y = -1
|
1081 |
#ind = 0
|
1082 |
#x = 100000
|
1083 |
#for pt in pointTuples:
|
1084 |
# if pt[ 1 ] > y:
|
1085 |
# #x = pt[ 0 ]
|
1086 |
# y = pt[ 1 ]
|
1087 |
# pass
|
1088 |
# pass
|
1089 |
#for pt in pointTuples:
|
1090 |
# if pt[ 1 ] < y:
|
1091 |
# continue
|
1092 |
# if pt[ 0 ] <= x:
|
1093 |
# x = pt[ 0 ]
|
1094 |
# ind = pointTuples.index( pt )
|
1095 |
# pass
|
1096 |
# pass
|
1097 |
y = 10000
|
1098 |
ind = 0
|
1099 |
x = -1
|
1100 |
for pt in pointTuples:
|
1101 |
if pt[ 0 ] > x:
|
1102 |
#x = pt[ 0 ]
|
1103 |
x = pt[ 0 ]
|
1104 |
pass
|
1105 |
pass
|
1106 |
for pt in pointTuples:
|
1107 |
if pt[ 0 ] < x:
|
1108 |
continue
|
1109 |
if pt[ 1 ] <= y:
|
1110 |
y = pt[ 1 ]
|
1111 |
ind = pointTuples.index( pt )
|
1112 |
pass
|
1113 |
pass
|
1114 |
print hist
|
1115 |
#print "greatest x=", x
|
1116 |
#print "smallest y=", y
|
1117 |
|
1118 |
### split tuple List in list before ind and after ind:
|
1119 |
list1 = pointTuples[ : ind ]
|
1120 |
list2 = pointTuples[ ind : ]
|
1121 |
|
1122 |
#print "------------", hist, "------------------"
|
1123 |
|
1124 |
#print "list1: ", list1
|
1125 |
#print "list2: ", list2
|
1126 |
|
1127 |
### now fill new graph
|
1128 |
cont = ROOT.TGraph()
|
1129 |
p = 0
|
1130 |
x = 100000
|
1131 |
lastTuple = ( None, None )
|
1132 |
start = False
|
1133 |
#print "List 2"
|
1134 |
for pt2 in list2:
|
1135 |
if pt2[ 0 ] >= xmax:
|
1136 |
continue
|
1137 |
elif pt2[ 1 ] >= ymax:
|
1138 |
continue
|
1139 |
elif pt2[ 1 ] <= ymin:
|
1140 |
continue
|
1141 |
if pt2[ 0 ] == 0 and pt2[ 1 ] == 0:
|
1142 |
continue
|
1143 |
if not start:
|
1144 |
cont.SetPoint( p, pt2[ 0 ], ymin )
|
1145 |
#print "\tAdding Point (", pt2[ 0 ], ", ", ymin, ")"
|
1146 |
p += 1
|
1147 |
start = True
|
1148 |
pass
|
1149 |
|
1150 |
|
1151 |
|
1152 |
cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] )
|
1153 |
#print "\tAdding Point (", pt2[ 0 ], ", ", pt2[ 1 ], ")"
|
1154 |
|
1155 |
|
1156 |
if pt2[ 0 ] < 480 and pt2[ 0 ] > 420:
|
1157 |
#print "setting additional points"
|
1158 |
p += 1
|
1159 |
cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0001 )
|
1160 |
p +=1
|
1161 |
cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0002 )
|
1162 |
p +=1
|
1163 |
cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0003 )
|
1164 |
#p +=1
|
1165 |
#cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0004 )
|
1166 |
#p +=1
|
1167 |
#cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0005 )
|
1168 |
#p +=1
|
1169 |
#cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] + 0.0006 )
|
1170 |
pass
|
1171 |
|
1172 |
p +=1
|
1173 |
lastTuple = ( pt2[ 0 ], pt2[ 1 ] )
|
1174 |
pass
|
1175 |
#print "List1"
|
1176 |
start = False
|
1177 |
for pt1 in list1:
|
1178 |
if pt1[ 0 ] >= xmax:
|
1179 |
continue
|
1180 |
elif pt1[ 1 ] >= ymax:
|
1181 |
continue
|
1182 |
elif pt1[ 1 ] <= ymin:
|
1183 |
continue
|
1184 |
if pt1[ 0 ] == 0 and pt1[ 1 ] == 0:
|
1185 |
continue
|
1186 |
|
1187 |
if not start:
|
1188 |
cont.SetPoint( p, pt1[ 0 ], ymin )
|
1189 |
print "\tAdding Point (", pt1[ 0 ], ", ", ymin, ")"
|
1190 |
|
1191 |
p += 1
|
1192 |
start = True
|
1193 |
pass
|
1194 |
|
1195 |
cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] )
|
1196 |
#print "\tAdding Point (", pt1[ 0 ], ", ", pt1[ 1 ], ")"
|
1197 |
|
1198 |
if pt1[ 0 ] < 480 and pt1[ 0 ] > 420:
|
1199 |
#print "setting additional points"
|
1200 |
p += 1
|
1201 |
cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0001 )
|
1202 |
p +=1
|
1203 |
cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0002 )
|
1204 |
p +=1
|
1205 |
cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0003 )
|
1206 |
#p +=1
|
1207 |
#cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0004 )
|
1208 |
#p +=1
|
1209 |
#cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0005 )
|
1210 |
#p +=1
|
1211 |
#cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] + 0.0006 )
|
1212 |
pass
|
1213 |
|
1214 |
|
1215 |
|
1216 |
p +=1
|
1217 |
lastTuple = ( pt1[ 0 ], pt1[ 1 ] )
|
1218 |
pass
|
1219 |
#### extrapolate last tuple to m0 = 0
|
1220 |
#print lastTuple
|
1221 |
#if re.search( "1", hist ):
|
1222 |
cont.SetPoint( p, 0 , lastTuple[ 1 ] )
|
1223 |
# pass
|
1224 |
|
1225 |
cont.SetLineColor( color )
|
1226 |
cont.SetLineWidth( 2 )
|
1227 |
#smooth( cont, 15 )
|
1228 |
smooth( cont, 15, ymin )
|
1229 |
histDict[ "cont" + hist ] = cont
|
1230 |
#cont.Draw( "AL" )
|
1231 |
pass
|
1232 |
|
1233 |
def getContourSnippet( histDict, hist="ObsEval", color=ROOT.kAzure -6, xmax=640, ymax=240 ):
|
1234 |
cont = ROOT.TGraph()
|
1235 |
startPointFound = False
|
1236 |
p = 0
|
1237 |
#print "---------------contSnippet----------------"
|
1238 |
for i in range( 0, histDict[ "cont" + hist ].GetN() ):
|
1239 |
x = ROOT.Double( 0 )
|
1240 |
y = ROOT.Double( 0 )
|
1241 |
histDict[ "cont" + hist ].GetPoint( i, x, y )
|
1242 |
if x <= xmax and y >= ymax and not startPointFound:
|
1243 |
#if y>ymax:
|
1244 |
startPointFound = True
|
1245 |
pass
|
1246 |
if startPointFound:
|
1247 |
#print i, " x=", x, " y=", y
|
1248 |
cont.SetPoint( p, x, y )
|
1249 |
p +=1
|
1250 |
pass
|
1251 |
pass
|
1252 |
cont.SetLineColor( color )
|
1253 |
cont.SetLineWidth( 2 )
|
1254 |
histDict[ "contSnippet" + hist ] = cont
|
1255 |
pass
|
1256 |
|
1257 |
def getFullContoursWithBand( histDict ):
|
1258 |
Exp = histDict[ "contExpSmoothEval" ].Clone()
|
1259 |
Exp.SetLineWidth( 2 )
|
1260 |
Exp.SetLineColor( ROOT.kAzure - 6 )
|
1261 |
#Exp.SetLineStyle( 7 )
|
1262 |
histDict[ "FullBandExp" ] = Exp
|
1263 |
Obs = histDict[ "contObsSmoothEval" ].Clone()
|
1264 |
Obs.SetLineWidth( 2 )
|
1265 |
Obs.SetLineColor( 1 )
|
1266 |
histDict[ "FullBandObs" ] = Obs
|
1267 |
|
1268 |
### now make the band
|
1269 |
band = ROOT.TGraph( histDict[ "contExpM1SmoothEval" ].GetN() + histDict[ "contExpP1SmoothEval" ].GetN() + 1 )
|
1270 |
|
1271 |
print "number of expected points=", histDict[ "contExpM1SmoothEval" ].GetN() + histDict[ "contExpP1SmoothEval" ].GetN() + 1
|
1272 |
p = 0;
|
1273 |
firstx = ROOT.Double( 0 )
|
1274 |
firsty = ROOT.Double( 0 )
|
1275 |
for i in range( 0, histDict[ "contExpM1SmoothEval" ].GetN() + 1 ):
|
1276 |
x = ROOT.Double( 0 )
|
1277 |
y = ROOT.Double( 0 )
|
1278 |
histDict[ "contExpM1SmoothEval" ].GetPoint( i, x, y )
|
1279 |
if x == 0 and y == 0:
|
1280 |
continue
|
1281 |
band.SetPoint( p, x, y )
|
1282 |
print p, " x=",x, " y=",y
|
1283 |
p += 1
|
1284 |
|
1285 |
if i == 0:
|
1286 |
firstx = x
|
1287 |
firsty = y
|
1288 |
pass
|
1289 |
pass
|
1290 |
for i in range( histDict[ "contExpP1SmoothEval" ].GetN() , 0 - 1, -1 ):
|
1291 |
x = ROOT.Double( 0 )
|
1292 |
y = ROOT.Double( 0 )
|
1293 |
histDict[ "contExpP1SmoothEval" ].GetPoint( i, x, y )
|
1294 |
if x == 0 and y == 0:
|
1295 |
continue
|
1296 |
band.SetPoint( p, x, y )
|
1297 |
print p, " x=",x, " y=",y
|
1298 |
p += 1
|
1299 |
pass
|
1300 |
band.SetPoint( p, firstx, firsty )
|
1301 |
print "used points=", p
|
1302 |
print "firstx=", firstx, " firsty=", firsty
|
1303 |
p += 1
|
1304 |
band.SetLineColor( ROOT.kAzure - 9 )
|
1305 |
band.SetFillColor( ROOT.kAzure - 9 )
|
1306 |
band.SetFillStyle( 1001 )
|
1307 |
histDict[ "FullBand" ] = band
|
1308 |
pass
|
1309 |
|
1310 |
def getSnippetContoursWithBand( histDict ):
|
1311 |
Exp = histDict[ "contSnippetExpEval" ].Clone()
|
1312 |
Exp.SetLineWidth( 2 )
|
1313 |
Exp.SetLineColor( 1 )
|
1314 |
Exp.SetLineStyle( 7 )
|
1315 |
histDict[ "SnippetBandExp" ] = Exp
|
1316 |
Obs = histDict[ "contSnippetObsEval" ].Clone()
|
1317 |
Obs.SetLineWidth( 2 )
|
1318 |
Obs.SetLineColor( 1 )
|
1319 |
histDict[ "SnippetBandObs" ] = Obs
|
1320 |
|
1321 |
### now make the band
|
1322 |
band = ROOT.TGraph( histDict[ "contSnippetExpM1Eval" ].GetN() + histDict[ "contSnippetExpP1Eval" ].GetN() + 1 )
|
1323 |
|
1324 |
print "number of expected points=", histDict[ "contSnippetExpM1Eval" ].GetN() + histDict[ "contSnippetExpP1Eval" ].GetN() + 1
|
1325 |
p = 0;
|
1326 |
firstx = ROOT.Double( 0 )
|
1327 |
firsty = ROOT.Double( 0 )
|
1328 |
for i in range( 0, histDict[ "contSnippetExpM1Eval" ].GetN() ):
|
1329 |
x = ROOT.Double( 0 )
|
1330 |
y = ROOT.Double( 0 )
|
1331 |
histDict[ "contSnippetExpM1Eval" ].GetPoint( i, x, y )
|
1332 |
if x == 0 and y == 0:
|
1333 |
continue
|
1334 |
band.SetPoint( p, x, y )
|
1335 |
print p, " x=",x, " y=",y
|
1336 |
p += 1
|
1337 |
|
1338 |
if i == 0:
|
1339 |
firstx = x
|
1340 |
firsty = y
|
1341 |
pass
|
1342 |
pass
|
1343 |
for i in range( histDict[ "contSnippetExpP1Eval" ].GetN() + 1 , 0, -1 ):
|
1344 |
x = ROOT.Double( 0 )
|
1345 |
y = ROOT.Double( 0 )
|
1346 |
histDict[ "contSnippetExpP1Eval" ].GetPoint( i, x, y )
|
1347 |
if x == 0 and y == 0:
|
1348 |
continue
|
1349 |
band.SetPoint( p, x, y )
|
1350 |
print p, " x=",x, " y=",y
|
1351 |
p += 1
|
1352 |
pass
|
1353 |
band.SetPoint( p, firstx, firsty )
|
1354 |
print "used points=", p
|
1355 |
print "firstx=", firstx, " firsty=", firsty
|
1356 |
p += 1
|
1357 |
band.SetLineColor( 1 )
|
1358 |
band.SetFillColor( ROOT.kYellow )
|
1359 |
band.SetFillStyle( 1001 )
|
1360 |
histDict[ "SnippetBand" ] = band
|
1361 |
pass
|
1362 |
|
1363 |
## def getContourSnippet( histDict, hist="ObsEval", color=ROOT.kAzure + 7 ):
|
1364 |
## #cDict[ "cList" ] = ROOT.TCanvas( "cList" , "cList" )
|
1365 |
## #cDict[ "cList" ].cd()
|
1366 |
## ### find graph with most points:
|
1367 |
## #print "-------------", hist, "--------------------"
|
1368 |
## indexPoints = 0
|
1369 |
## nPoints = 0
|
1370 |
## for j in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
1371 |
## #print type( histDict[ "contourList" + hist ][ j ] )
|
1372 |
## if histDict[ "contourList" + hist ][ j ].GetN() > nPoints:
|
1373 |
## nPoints = histDict[ "contourList" + hist ][ j ].GetN()
|
1374 |
## indexPoints = j
|
1375 |
## pass
|
1376 |
## pass
|
1377 |
## ### make new graph
|
1378 |
## #get the x,y tuple first
|
1379 |
## pointTuples = []
|
1380 |
## for i in range( 0, histDict[ "contourList" + hist ][ indexPoints ].GetN() ):
|
1381 |
## x = ROOT.Double( 0 )
|
1382 |
## y = ROOT.Double( 0 )
|
1383 |
## histDict[ "contourList" + hist ][ indexPoints ].GetPoint( i, x, y )
|
1384 |
## pointTuples.append( ( x,y ) )
|
1385 |
## pass
|
1386 |
## # now find the index of the list, where y is greatest and x is smallest
|
1387 |
## y = -1
|
1388 |
## ind = 0
|
1389 |
## x = 100000
|
1390 |
## for pt in pointTuples:
|
1391 |
## if pt[ 1 ] > y:
|
1392 |
## #x = pt[ 0 ]
|
1393 |
## y = pt[ 1 ]
|
1394 |
## pass
|
1395 |
## pass
|
1396 |
## for pt in pointTuples:
|
1397 |
## if pt[ 1 ] < y:
|
1398 |
## continue
|
1399 |
## if pt[ 0 ] <= x:
|
1400 |
## x = pt[ 0 ]
|
1401 |
## ind = pointTuples.index( pt )
|
1402 |
## pass
|
1403 |
## pass
|
1404 |
## ### split tuple List in list before ind and after ind:
|
1405 |
## list1 = pointTuples[ : ind ]
|
1406 |
## list2 = pointTuples[ ind : ]
|
1407 |
|
1408 |
## #print list2
|
1409 |
## #print list1
|
1410 |
|
1411 |
## ### now fill new graph
|
1412 |
## cont = ROOT.TGraph()
|
1413 |
## p = 0
|
1414 |
## startPointFound = False
|
1415 |
## #print "List 2"
|
1416 |
|
1417 |
## print "=========== Snippet:"
|
1418 |
## for pt2 in list2:
|
1419 |
## if pt2[ 0 ] >= 700:
|
1420 |
## continue
|
1421 |
## elif pt2[ 1 ] >= 520:
|
1422 |
## continue
|
1423 |
## if pt2[ 0 ] <= 410 and pt2[ 1 ] >= 370:
|
1424 |
## startPointFound = True
|
1425 |
## pass
|
1426 |
## if startPointFound:
|
1427 |
## print "point added: x=", pt2[ 0 ], " y=", pt2[ 1 ]
|
1428 |
## cont.SetPoint( p, pt2[ 0 ], pt2[ 1 ] )
|
1429 |
## #print p, ": x=", pt2[ 0 ], "y=", pt2[ 1 ]
|
1430 |
## p +=1
|
1431 |
## pass
|
1432 |
## pass
|
1433 |
## #print "List1"
|
1434 |
## for pt1 in list1:
|
1435 |
## if pt1[ 0 ] >= 700:
|
1436 |
## continue
|
1437 |
## elif pt1[ 1 ] >= 520:
|
1438 |
## continue
|
1439 |
## if pt1[ 0 ] <= 410 and pt1[ 1 ] >= 370:
|
1440 |
## startPointFound = True
|
1441 |
## pass
|
1442 |
## if startPointFound:
|
1443 |
## print "point added: x=", pt1[ 0 ], " y=", pt1[ 1 ]
|
1444 |
## cont.SetPoint( p, pt1[ 0 ], pt1[ 1 ] )
|
1445 |
## #print p, ": x=", pt1[ 0 ], "y=", pt1[ 1 ]
|
1446 |
## p +=1
|
1447 |
## pass
|
1448 |
## pass
|
1449 |
## cont.SetLineColor( color )
|
1450 |
## cont.SetLineWidth( 3 )
|
1451 |
## smooth( cont, 15 )
|
1452 |
## histDict[ "contSnippet" + hist ] = cont
|
1453 |
## #cont.Draw( "AL" )
|
1454 |
## pass
|
1455 |
|
1456 |
## def drawContour( histDict, cDict, hist="ObsEval" ):
|
1457 |
## cDict[ "cList" ] = ROOT.TCanvas( "cList" , "cList" )
|
1458 |
## cDict[ "cList" ].cd()
|
1459 |
## ### find graph with most points:
|
1460 |
## indexPoints = 0
|
1461 |
## nPoints = 0
|
1462 |
## for j in range( 0, len( histDict[ "contourList" + hist ] ) ):
|
1463 |
## if histDict[ "contourList" + hist ][ j ].GetN() > nPoints:
|
1464 |
## nPoints = histDict[ "contourList" + hist ][ j ].GetN()
|
1465 |
## indexPoints = j
|
1466 |
## pass
|
1467 |
## pass
|
1468 |
## ### make new graph
|
1469 |
## cont = ROOT.TGraph()
|
1470 |
## removePointTuples = []
|
1471 |
## cont = histDict[ "contourList" + hist ][ indexPoints ].Clone()
|
1472 |
## for p in range( 0, histDict[ "contourList" + hist ][ indexPoints ].GetN() ):
|
1473 |
## x = ROOT.Double( 0 )
|
1474 |
## y = ROOT.Double( 0 )
|
1475 |
## histDict[ "contourList" + hist ][ indexPoints ].GetPoint( p, x, y )
|
1476 |
## #print p, ": x=", x, "y=", y
|
1477 |
## if x >= 800:
|
1478 |
## #counter += 1
|
1479 |
## removePointTuples.append( ( x,y ) )
|
1480 |
## continue
|
1481 |
## elif y >= 600:
|
1482 |
## removePointTuples.append( ( x,y ) )
|
1483 |
## #counter += 1
|
1484 |
## continue
|
1485 |
## ##cont.SetPoint( p - counter, x, y )
|
1486 |
## #pointTuples.append( ( x, y ) )
|
1487 |
## #pass
|
1488 |
## #sorted( pointTuples, key=lambda point: point[ 0 ])
|
1489 |
## for p in range( 0, histDict[ "contourList" + hist ][ indexPoints ].GetN() ):
|
1490 |
## x = ROOT.Double( 0 )
|
1491 |
## y = ROOT.Double( 0 )
|
1492 |
## histDict[ "contourList" + hist ][ indexPoints ].GetPoint( p, x, y )
|
1493 |
## if ( x, y ) in removePointTuples:
|
1494 |
## #print p, ": x=", pointTuples[ p ][ 0 ], "y=", pointTuples[ p ][ 1 ]
|
1495 |
## ind = findPointIndex( cont, ( x,y ) )
|
1496 |
## #print ind
|
1497 |
## if not ind == -1:
|
1498 |
## cont.RemovePoint( ind )
|
1499 |
## pass
|
1500 |
## pass
|
1501 |
## pass
|
1502 |
## cont.SetLineColor( ROOT.kAzure + 7 )
|
1503 |
## cont.SetLineWidth( 3 )
|
1504 |
## histDict[ "cont" + hist ] = cont
|
1505 |
## cont.Draw( "AL" )
|
1506 |
## pass
|
1507 |
|