1 |
|
2 |
//plane : ax + by + cz + d = 0;
|
3 |
|
4 |
|
5 |
|
6 |
// compute the plane equation from a set of 3 points.
|
7 |
// returns false if any of the points are co-incident and do not form a plane.
|
8 |
// A = point 1
|
9 |
// B = point 2
|
10 |
// C = point 3
|
11 |
// plane = destination for plane equation A,B,C,D
|
12 |
bool computePlane(const double A[],const double B[],const double C[],double plane[])
|
13 |
{
|
14 |
bool ret = false;
|
15 |
|
16 |
double vx = (B[0] - C[0]);
|
17 |
double vy = (B[1] - C[1]);
|
18 |
double vz = (B[2] - C[2]);
|
19 |
|
20 |
double wx = (A[0] - B[0]);
|
21 |
double wy = (A[1] - B[1]);
|
22 |
double wz = (A[2] - B[2]);
|
23 |
|
24 |
double vw_x = vy * wz - vz * wy;
|
25 |
double vw_y = vz * wx - vx * wz;
|
26 |
double vw_z = vx * wy - vy * wx;
|
27 |
|
28 |
double mag = sqrtf((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z));
|
29 |
|
30 |
if ( mag > 0 )
|
31 |
{
|
32 |
|
33 |
mag = 1.0/mag; // compute the recipricol distance
|
34 |
|
35 |
ret = true;
|
36 |
|
37 |
plane[0] = vw_x * mag;
|
38 |
plane[1] = vw_y * mag;
|
39 |
plane[2] = vw_z * mag;
|
40 |
plane[3] = 0.0 - ((plane[0]*A[0])+(plane[1]*A[1])+(plane[2]*A[2]));
|
41 |
|
42 |
}
|
43 |
return ret;
|
44 |
}
|
45 |
|
46 |
|
47 |
// inertesect a line semgent with a plane, return false if they don't intersect.
|
48 |
// otherwise computes and returns the intesection point 'split'
|
49 |
// p1 = 3d point of the start of the line semgent.
|
50 |
// p2 = 3d point of the end of the line segment.
|
51 |
// split = address to store the intersection location x,y,z.
|
52 |
// plane = the plane equation as four doubles A,B,C,D.
|
53 |
|
54 |
bool intersectLinePlane(const double p1[],const double p2[],double split[],const double plane[])
|
55 |
{
|
56 |
|
57 |
double dp1 = p1[0]*plane[0] + p1[1]*plane[1] + p1[2]*plane[2] + plane[3];
|
58 |
double dp2 = p2[0]*plane[0] + p2[1]*plane[1] + p2[2]*plane[2] + plane[3];
|
59 |
|
60 |
if ( dp1 > 0 && dp2 > 0 ) return false;
|
61 |
if ( dp1 < 0 && dp2 < 0 ) return false;
|
62 |
|
63 |
double dir[3];
|
64 |
|
65 |
dir[0] = p2[0] - p1[0];
|
66 |
dir[1] = p2[1] - p1[1];
|
67 |
dir[2] = p2[2] - p1[2];
|
68 |
|
69 |
double dot1 = dir[0]*plane[0] + dir[1]*plane[1] + dir[2]*plane[2];
|
70 |
double dot2 = dp1 - plane[3];
|
71 |
|
72 |
double t = -(plane[3] + dot2 ) / dot1;
|
73 |
|
74 |
split[0] = (dir[0]*t)+p1[0];
|
75 |
split[1] = (dir[1]*t)+p1[1];
|
76 |
split[2] = (dir[2]*t)+p1[2];
|
77 |
|
78 |
return true;
|
79 |
}
|
80 |
|
81 |
|
82 |
bool intersectLinePlane_tolerance(const double p1[],const double p2[],double split[],const double plane[], double epsilon = 1E-4)
|
83 |
{
|
84 |
|
85 |
double dp1 = p1[0]*plane[0] + p1[1]*plane[1] + p1[2]*plane[2] + plane[3];
|
86 |
double dp2 = p2[0]*plane[0] + p2[1]*plane[1] + p2[2]*plane[2] + plane[3];
|
87 |
|
88 |
if( fabs(dp1)> epsilon && fabs(dp2) > epsilon){ //within the tolereance, that means point is on the plane
|
89 |
|
90 |
if ( dp1 > 0 && dp2 > 0 ) return false;
|
91 |
if ( dp1 < 0 && dp2 < 0 ) return false;
|
92 |
|
93 |
}
|
94 |
|
95 |
|
96 |
double dir[3];
|
97 |
|
98 |
dir[0] = p2[0] - p1[0];
|
99 |
dir[1] = p2[1] - p1[1];
|
100 |
dir[2] = p2[2] - p1[2];
|
101 |
|
102 |
double dot1 = dir[0]*plane[0] + dir[1]*plane[1] + dir[2]*plane[2];
|
103 |
double dot2 = dp1 - plane[3];
|
104 |
|
105 |
double t = -(plane[3] + dot2 ) / dot1;
|
106 |
|
107 |
split[0] = (dir[0]*t)+p1[0];
|
108 |
split[1] = (dir[1]*t)+p1[1];
|
109 |
split[2] = (dir[2]*t)+p1[2];
|
110 |
|
111 |
return true;
|
112 |
}
|
113 |
|
114 |
|
115 |
|
116 |
// compute the distance between a 3d point and a plane
|
117 |
double distToPlaneOLD(const double p[],const double plane[])
|
118 |
{
|
119 |
return p[0]*plane[0] + p[1]*plane[1] + p[2]*plane[2] + plane[3];
|
120 |
}
|
121 |
|
122 |
|
123 |
|
124 |
// compute the distance between a 3d point and a plane
|
125 |
double distToPlane(const double p[],const double plane[])
|
126 |
{
|
127 |
double dist = p[0]*plane[0] + p[1]*plane[1] + p[2]*plane[2] + plane[3];
|
128 |
return dist / sqrt( plane[0] * plane[0] + plane[1] * plane[1] + plane[2] * plane[2]);
|
129 |
}
|
130 |
|
131 |
|
132 |
double distTwoPoints(const double p1[],const double p2[]){
|
133 |
|
134 |
return sqrt( pow(p1[0]-p2[0],2) + pow(p1[1]-p2[1],2) + pow(p1[2]-p2[2],2) );
|
135 |
|
136 |
}
|
137 |
|
138 |
|
139 |
double check4PointsInAplane(double p1[],double p2[],double p3[],double p4[]){
|
140 |
double p[4];
|
141 |
computePlane(p1,p2,p3,p);
|
142 |
double y = p[0] * p4[0] + p[1] * p4[1] + p[2]*p4[2] + p[3];
|
143 |
return y;
|
144 |
|
145 |
}
|
146 |
|
147 |
|
148 |
int pnpoly(int nvert, double vertx[], double verty[], double testx, double testy){
|
149 |
int i, j, c = 0;
|
150 |
for (i = 0, j = nvert-1; i < nvert; j = i++) {
|
151 |
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
|
152 |
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
|
153 |
c = !c;
|
154 |
}
|
155 |
return c;
|
156 |
}
|
157 |
|
158 |
// area2D_Polygon(): compute the area of a 2D polygon
|
159 |
// Input: int n = the number of vertices in the polygon
|
160 |
// Point* V = an array of n+2 vertices with V[n]=V[0]
|
161 |
// Return: the (float) area of the polygon
|
162 |
double area2D_Polygon( int n, double X[],double Y[]){
|
163 |
double area = 0;
|
164 |
int i, j, k; // indices
|
165 |
|
166 |
if (n < 3) return 0; // a degenerate polygon
|
167 |
|
168 |
for (i=1, j=2, k=0; i<n; i++, j++, k++) {
|
169 |
//double tmp = j<n? Y[j]: Y[0];
|
170 |
area += X[i] * (Y[j] - Y[k]);
|
171 |
}
|
172 |
|
173 |
area += X[0] * (Y[1] - Y[n-1]); // wrap-around term
|
174 |
return area / 2.0;
|
175 |
}
|
176 |
|
177 |
double AreaofPolygon(int nvert,double X[], double Y[]){
|
178 |
|
179 |
double area=0. ;
|
180 |
int i, j=nvert-1 ;
|
181 |
|
182 |
for (i=0; i<nvert; i++) {
|
183 |
area+=(X[j]+X[i])*(Y[j]-Y[i]);
|
184 |
j=i;
|
185 |
}
|
186 |
|
187 |
return area*.5;
|
188 |
|
189 |
}
|
190 |
|
191 |
void distPreStepPointAllSides(double pos[],double pre[],int ieta, int iphi, float res[], int iz= 0, int inEB=1){
|
192 |
|
193 |
if( inEB && !( ieta>=0 && ieta<=169 && iphi>=0 && iphi<=369)){
|
194 |
cout<<"input ieta/iphi "<< ieta<<" "<<iphi<<endl;
|
195 |
exit(1);
|
196 |
}
|
197 |
|
198 |
double p[4];
|
199 |
double ct[3];
|
200 |
|
201 |
if(inEB==1){
|
202 |
ct[0] = xctEBAll[ieta][iphi];
|
203 |
ct[1] = yctEBAll[ieta][iphi];
|
204 |
ct[2] = zctEBAll[ieta][iphi];
|
205 |
}else{
|
206 |
ct[0] = xctEEAll[iz][ieta][iphi];
|
207 |
ct[1] = yctEEAll[iz][ieta][iphi];
|
208 |
ct[2] = zctEEAll[iz][ieta][iphi];
|
209 |
|
210 |
if(iz!=1 && iz!=0){
|
211 |
cout<<"wrong iz "<< iz <<endl;
|
212 |
exit(1);
|
213 |
}
|
214 |
|
215 |
}
|
216 |
|
217 |
double split[3];
|
218 |
bool intersets[6];
|
219 |
int inpolygon[6];
|
220 |
|
221 |
double dist_ct[6];
|
222 |
double dist_pre[6];
|
223 |
double distpremin = 1E9;
|
224 |
int ind_distpremin = -1;
|
225 |
|
226 |
double split_new_all[6][2];
|
227 |
for(int j=0; j<6;j++){
|
228 |
for(int k=0; k<2; k++){
|
229 |
split_new_all[j][k] = -9;
|
230 |
}
|
231 |
}
|
232 |
|
233 |
for(int pl = 0; pl<=5; pl++){
|
234 |
for(int j1=0; j1<4; j1++){
|
235 |
|
236 |
if(inEB==1){
|
237 |
p[j1] = map_planes_eb[ieta][iphi][4*pl+j1];
|
238 |
}else{
|
239 |
p[j1] = map_planes_ee[iz][ieta][iphi][4*pl+j1];
|
240 |
}
|
241 |
}
|
242 |
|
243 |
double dd1 = distToPlane(pre,p);
|
244 |
double dd0 = distToPlane(ct,p);
|
245 |
|
246 |
if(distpremin>fabs(dd1)){
|
247 |
distpremin = fabs(dd1);
|
248 |
ind_distpremin = pl;
|
249 |
}
|
250 |
|
251 |
dist_ct[pl] = dd0;
|
252 |
dist_pre[pl] = dd1;
|
253 |
|
254 |
//bool interset_strict = intersectLinePlane(pos,pre,split,p);
|
255 |
bool interset = intersectLinePlane_tolerance(pos,pre,split,p);
|
256 |
|
257 |
intersets[pl] = interset;
|
258 |
inpolygon[pl] = 0;
|
259 |
|
260 |
if(interset){//check the split if inside the area
|
261 |
double points[4][3];
|
262 |
|
263 |
double points_new[4][2];
|
264 |
points_new[0][0] =0;
|
265 |
points_new[0][1] =0;
|
266 |
|
267 |
for(int l=0; l<4; l++){ // 4 lines
|
268 |
int ind1 = coindall[pl][l];
|
269 |
|
270 |
if(inEB==1){
|
271 |
points[l][0] = coxEBAll[ieta][iphi][ind1];
|
272 |
points[l][1] = coyEBAll[ieta][iphi][ind1];
|
273 |
points[l][2] = cozEBAll[ieta][iphi][ind1];
|
274 |
}else{
|
275 |
points[l][0] = coxEEAll[iz][ieta][iphi][ind1];
|
276 |
points[l][1] = coyEEAll[iz][ieta][iphi][ind1];
|
277 |
points[l][2] = cozEEAll[iz][ieta][iphi][ind1];
|
278 |
}
|
279 |
|
280 |
}
|
281 |
points_new[1][0] = distTwoPoints(points[1],points[0]);
|
282 |
points_new[1][1] = 0;
|
283 |
TVector3 v12(points[1][0]-points[0][0],points[1][1]-points[0][1],points[1][2]-points[0][2] );
|
284 |
TVector3 v13(points[2][0]-points[0][0],points[2][1]-points[0][1],points[2][2]-points[0][2] );
|
285 |
TVector3 v14(points[3][0]-points[0][0],points[3][1]-points[0][1],points[3][2]-points[0][2] );
|
286 |
double theta = v12.Angle(v13);
|
287 |
double d13 = distTwoPoints(points[0],points[2]);
|
288 |
|
289 |
if( fabs(d13*cos(theta)-v12.Dot(v13)/v12.Mag() ) > 1E-10 ){
|
290 |
cout<<"check1 "<< d13*cos(theta) <<" "<< v12.Dot(v13)/v12.Mag() <<" "<< d13*cos(theta) - v12.Dot(v13)/v12.Mag() <<endl;
|
291 |
exit(1);
|
292 |
}
|
293 |
TVector3 v = v12.Cross(v13);
|
294 |
if( v.z() ==0){
|
295 |
cout<<"wrong v12Xv13 ?? "<< v.z()<<endl;
|
296 |
exit(1);
|
297 |
}
|
298 |
|
299 |
if( fabs( v.Mag()/v12.Mag() - d13 * sin(theta)) > 1E-10 ){
|
300 |
cout<<"check2 "<< v.Mag()/v12.Mag() <<" "<< d13 * sin(theta) <<" "<< v.Mag()/v12.Mag() - d13 * sin(theta) <<endl;
|
301 |
exit(1);
|
302 |
}
|
303 |
|
304 |
points_new[2][0] = v12.Dot(v13)/v12.Mag();
|
305 |
points_new[2][1] = v.z()/fabs(v.z()) * v.Mag()/v12.Mag();
|
306 |
theta = v12.Angle(v14);
|
307 |
v = v12.Cross(v14);
|
308 |
if( v.z() ==0){
|
309 |
cout<<"wrong v12Xv14 ?? "<< v.z()<<endl;
|
310 |
exit(1);
|
311 |
}
|
312 |
|
313 |
points_new[3][0] = v12.Dot(v14)/v12.Mag();
|
314 |
points_new[3][1] = v.z()/fabs(v.z()) * v.Mag()/v12.Mag();
|
315 |
|
316 |
//now check if the split
|
317 |
double split_new[2];
|
318 |
|
319 |
TVector3 v1s(split[0]-points[0][0],split[1]-points[0][1],split[2]-points[0][2]);
|
320 |
v = v12.Cross(v1s);
|
321 |
split_new[0] = v12.Dot(v1s)/v12.Mag();
|
322 |
if(v.z()==0){
|
323 |
split_new[1] = 0 ;
|
324 |
} else{
|
325 |
split_new[1] = v.z()/fabs(v.z()) * v.Mag()/v12.Mag();
|
326 |
}
|
327 |
|
328 |
//now check split_new inside
|
329 |
double vx[4];
|
330 |
double vy[4];
|
331 |
|
332 |
for(int n=0; n<4; n++){
|
333 |
vx[n] = points_new[n][0];
|
334 |
vy[n] = points_new[n][1];
|
335 |
}
|
336 |
int c = pnpoly(4,vx,vy,split_new[0],split_new[1]);
|
337 |
inpolygon[pl] = c;
|
338 |
|
339 |
|
340 |
split_new_all[pl][0] = split_new[0];
|
341 |
split_new_all[pl][1] = split_new[1];
|
342 |
|
343 |
|
344 |
}///if interset
|
345 |
|
346 |
|
347 |
}//all 6 planes
|
348 |
|
349 |
//first find intersets and inside area
|
350 |
vector<int> pl;
|
351 |
for(int j=0; j<6; j++){
|
352 |
if( intersets[j] && inpolygon[j] ){
|
353 |
pl.push_back(j);
|
354 |
}
|
355 |
}
|
356 |
|
357 |
int ind;
|
358 |
if(pl.size()>1){
|
359 |
|
360 |
double premin = 1E9;
|
361 |
ind = pl[0];
|
362 |
for(int j=0;j<int(pl.size());j++){
|
363 |
if(premin> fabs(dist_pre[pl[j]])){
|
364 |
premin = fabs(dist_pre[pl[j]]);
|
365 |
ind = pl[j];
|
366 |
}
|
367 |
}
|
368 |
|
369 |
}else if(pl.size()==1){
|
370 |
ind = pl[0];
|
371 |
|
372 |
|
373 |
}else{
|
374 |
ind = ind_distpremin;
|
375 |
}
|
376 |
res[0] = dist_pre[ind] * dist_ct[ind]>0 ? fabs(dist_pre[ind]) : -fabs(dist_pre[ind]); //postive means inside
|
377 |
|
378 |
res[1] = ind;
|
379 |
res[2] = split_new_all[ind][0];
|
380 |
res[3] = split_new_all[ind][1];
|
381 |
|
382 |
|
383 |
}
|
384 |
|