1 |
|
2 |
|
3 |
|
4 |
|
5 |
///to access xEBAll[ieta][iphi]
|
6 |
/// input ieta -85,0,84
|
7 |
int getIndetaxyzEBAll(int ieta){
|
8 |
return ieta+85;
|
9 |
}
|
10 |
|
11 |
////something not consistent with 167,152?
|
12 |
|
13 |
|
14 |
///input 0, 359 after convxtalid
|
15 |
int getIndphixyzEBAll(int iphi){
|
16 |
|
17 |
iphi = iphi-1;
|
18 |
if(iphi<0) return 359;
|
19 |
else return iphi;
|
20 |
|
21 |
}
|
22 |
|
23 |
double DeltaPhi(double phi1, double phi2){
|
24 |
|
25 |
//double diff = fabs(phi2 - phi1);
|
26 |
double diff = phi1 - phi2;
|
27 |
|
28 |
while (diff >acos(-1)) diff -= 2*acos(-1);
|
29 |
while (diff <= -acos(-1)) diff += 2*acos(-1);
|
30 |
|
31 |
return diff;
|
32 |
|
33 |
}
|
34 |
|
35 |
|
36 |
double GetDeltaR(double eta1, double eta2, double phi1, double phi2){
|
37 |
|
38 |
return sqrt( (eta1-eta2)*(eta1-eta2)
|
39 |
+ DeltaPhi(phi1, phi2)*DeltaPhi(phi1, phi2) );
|
40 |
|
41 |
}
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
Float_t getcosd(Float_t eta1, Float_t phi1, Float_t eta2, Float_t phi2) {
|
47 |
Float_t theta1 = 2*atan(exp(-eta1));
|
48 |
Float_t theta2 = 2*atan(exp(-eta2));
|
49 |
Float_t cosd;
|
50 |
Float_t dphi = DeltaPhi(phi1,phi2);
|
51 |
cosd = cos(theta1)*cos(theta2)+sin(theta1)*sin(theta2)*cos(dphi); //opening angle
|
52 |
return cosd;
|
53 |
}
|
54 |
void separation(Float_t sceta1, Float_t scphi1, Float_t sceta2, Float_t scphi2, Float_t &dr)
|
55 |
{
|
56 |
float dphi=fabs(scphi1-scphi2);
|
57 |
if(dphi > (2*acos(-1)-fabs(scphi1-scphi2))) dphi = ( 2*acos(-1)-fabs(scphi1-scphi2));
|
58 |
dr=sqrt((sceta1- sceta2)*(sceta1- sceta2)+dphi*dphi);
|
59 |
}
|
60 |
|
61 |
|
62 |
|
63 |
void calcPairObjects(int pid1, int pid2,float en[],float eta[],float phi[],float res[]){
|
64 |
|
65 |
TLorentzVector vpht[2];
|
66 |
|
67 |
TLorentzVector vpair;
|
68 |
|
69 |
float mass[2]={0,0};
|
70 |
|
71 |
if(pid1==11) mass[0] = 0.511*0.001;
|
72 |
else if(pid1==13) mass[0] = 0.105658;
|
73 |
else if(pid1==22) mass[0] = 0;
|
74 |
else{
|
75 |
cout<<"calcPairMuPht, mass.pid1 "<<endl;
|
76 |
exit(1);
|
77 |
}
|
78 |
|
79 |
if(pid2==11) mass[1] = 0.511*0.001;
|
80 |
else if(pid2==13) mass[1] = 0.105658;
|
81 |
else if(pid2 ==22) mass[1] = 0;
|
82 |
else {
|
83 |
cout<<"calcPairMuPht, mass. pid2"<<endl;
|
84 |
exit(1);
|
85 |
}
|
86 |
|
87 |
|
88 |
if( en[0] < mass[0] || en[1] < mass[1]) {
|
89 |
cout<<"warning calcPairObjects E<m? "<< en[0]<<" "<<en[1] <<" "<< pid1<<" "<<pid2<<endl;
|
90 |
exit(1);
|
91 |
}
|
92 |
|
93 |
for( int j= 0; j<2; j++){
|
94 |
|
95 |
float e = sqrt( en[j] * en[j] - mass[j]*mass[j]);
|
96 |
float px = e * sin ( 2*atan(exp(-eta[j]))) * cos(phi[j]);
|
97 |
float py = e * sin ( 2*atan(exp(-eta[j]))) * sin(phi[j]);
|
98 |
float pz = e * cos ( 2*atan(exp(-eta[j]))) ;
|
99 |
|
100 |
vpht[j].SetXYZT(px,py,pz,e);
|
101 |
|
102 |
}
|
103 |
|
104 |
vpair = vpht[0] + vpht[1];
|
105 |
|
106 |
res[0] = vpair.M();
|
107 |
res[1] = vpair.Eta();
|
108 |
res[2] = vpair.Phi();
|
109 |
res[3] = vpair.Pt();
|
110 |
|
111 |
|
112 |
|
113 |
|
114 |
}
|
115 |
|
116 |
|
117 |
void calcPairPhoton(float en[],float eta[],float phi[],float res[]){
|
118 |
|
119 |
TLorentzVector vpht[2];
|
120 |
|
121 |
TLorentzVector vpair;
|
122 |
|
123 |
|
124 |
for( int j= 0; j<2; j++){
|
125 |
|
126 |
float e = en[j];
|
127 |
float px = e * sin ( 2*atan(exp(-eta[j]))) * cos(phi[j]);
|
128 |
float py = e * sin ( 2*atan(exp(-eta[j]))) * sin(phi[j]);
|
129 |
float pz = e * cos ( 2*atan(exp(-eta[j]))) ;
|
130 |
|
131 |
vpht[j].SetXYZT(px,py,pz,e);
|
132 |
|
133 |
}
|
134 |
|
135 |
vpair = vpht[0] + vpht[1];
|
136 |
|
137 |
res[0] = vpair.M();
|
138 |
res[1] = vpair.Eta();
|
139 |
res[2] = vpair.Phi();
|
140 |
res[3] = vpair.Pt();
|
141 |
|
142 |
|
143 |
|
144 |
|
145 |
}
|
146 |
|
147 |
void phinorm(Float_t & PHI)
|
148 |
{
|
149 |
while (PHI<0) PHI= PHI + 2*acos(-1);
|
150 |
if(PHI>2*acos(-1)) PHI= PHI - 2*acos(-1);
|
151 |
|
152 |
}
|
153 |
|
154 |
|
155 |
////change to [-pi,pi];
|
156 |
float phinorm2(float phi){
|
157 |
while( phi > acos(-1) ) phi -= 2*acos(-1);
|
158 |
while(phi< -acos(-1)) phi += 2*acos(-1);
|
159 |
|
160 |
return phi;
|
161 |
|
162 |
|
163 |
}
|
164 |
|
165 |
|
166 |
|
167 |
|
168 |
///input phi : [-pi,pi];
|
169 |
////this is the not exactly the same as;
|
170 |
////RecoEcal/EgammaCoreTools/src/LogPositionCalc.cc
|
171 |
///need x,y,z information of each crystal to do that.
|
172 |
|
173 |
/////center iphi = 190 or 191 phi change signs. 3.133, -3.133
|
174 |
|
175 |
void simpleLogWeightedEtaPhi(int nxt, float esum, float energy[],float eta[],float phi[],int phimax, float res[]){
|
176 |
|
177 |
|
178 |
|
179 |
float etasum = 0;
|
180 |
float phisum = 0;
|
181 |
float wtsum = 0;
|
182 |
|
183 |
if(phimax==190 || phimax==191){
|
184 |
for( int j=0; j<nxt; j++){
|
185 |
phinorm(phi[j]);
|
186 |
}
|
187 |
}
|
188 |
|
189 |
|
190 |
for( int j=0; j<nxt; j++){
|
191 |
float mw=4.2+log(fabs(energy[j])/esum);
|
192 |
if(mw < 0.) mw=0.;
|
193 |
wtsum += mw;
|
194 |
etasum += mw * eta[j];
|
195 |
phisum += mw * phi[j];
|
196 |
|
197 |
}
|
198 |
|
199 |
|
200 |
etasum /= wtsum;
|
201 |
phisum /= wtsum;
|
202 |
|
203 |
///change to [-pi,pi]
|
204 |
phinorm2(phisum);
|
205 |
|
206 |
|
207 |
res[0] = etasum;
|
208 |
res[1] = phisum;
|
209 |
|
210 |
////cluster shape
|
211 |
|
212 |
|
213 |
|
214 |
|
215 |
}
|
216 |
|
217 |
// // ///cluster shape SigmaEtaEta, SigmaEtaPhi,SigmaPhiPhi
|
218 |
// // ///
|
219 |
|
220 |
|
221 |
void Calculate_ClusterCovariance(int nxt, float esum,float ceta,float cphi,float en[],float eta[],float phi[],float res[]){
|
222 |
|
223 |
double numeratorEtaEta = 0;
|
224 |
double numeratorEtaPhi = 0;
|
225 |
double numeratorPhiPhi = 0;
|
226 |
double denominator = 0;
|
227 |
|
228 |
for( int j=0; j<nxt; j++){
|
229 |
|
230 |
float dPhi = phi[j] - cphi;
|
231 |
|
232 |
if(dPhi > acos(-1)) dPhi = 2*acos(-1) - dPhi;
|
233 |
if(dPhi <-acos(-1)) dPhi = 2*acos(-1) + dPhi;
|
234 |
|
235 |
float dEta = eta[j] - ceta;
|
236 |
|
237 |
|
238 |
float w=4.2+log(fabs(en[j])/esum);
|
239 |
if(w < 0.) w=0.;
|
240 |
|
241 |
|
242 |
denominator += w;
|
243 |
numeratorEtaEta += w * dEta * dEta;
|
244 |
numeratorEtaPhi += w * dEta * dPhi;
|
245 |
numeratorPhiPhi += w * dPhi * dPhi;
|
246 |
|
247 |
}
|
248 |
|
249 |
|
250 |
res[0] = numeratorEtaEta / denominator;
|
251 |
res[1] = numeratorEtaPhi / denominator;
|
252 |
res[2] = numeratorPhiPhi / denominator;
|
253 |
|
254 |
|
255 |
|
256 |
|
257 |
}
|
258 |
|
259 |
|
260 |
|
261 |
|
262 |
float Calculate_LAT(int nxt, float xclus, float yclus, float zclus,float en[],float x[],float y[],float z[]){
|
263 |
|
264 |
if( nxt <3) return 10;
|
265 |
|
266 |
TVector3 clVect(xclus,yclus,zclus);
|
267 |
|
268 |
TVector3 clDir = clVect;
|
269 |
clDir *= 1.0/clDir.Mag();
|
270 |
|
271 |
float redmoment = 0;
|
272 |
|
273 |
float e12 = en[0] + en[1];
|
274 |
TVector3 gblPos;
|
275 |
for( int j=2; j< nxt; j++){
|
276 |
gblPos.SetXYZ(x[j],y[j],z[j]);
|
277 |
TVector3 diff = gblPos - clVect;
|
278 |
|
279 |
TVector3 DigiVect = diff - diff.Dot(clDir)*clDir;
|
280 |
float r = DigiVect.Mag();
|
281 |
redmoment += r*r*fabs(en[j]);
|
282 |
}
|
283 |
|
284 |
float lat = redmoment/(redmoment + 2.19*2.19*e12);
|
285 |
|
286 |
return lat;
|
287 |
|
288 |
|
289 |
}
|
290 |
|
291 |
|
292 |
///change [-85,84] to bin 1, to bin 170
|
293 |
///change [0,359] to bin 1, 260;
|
294 |
|
295 |
void getBinEtaPhi(int eta, int phi, float res[]){
|
296 |
|
297 |
if( eta <0) {
|
298 |
res[0] = eta + 85 +1+0.001;
|
299 |
|
300 |
res[2] = eta;
|
301 |
|
302 |
}
|
303 |
else {
|
304 |
res[0] = eta + 85 +2+0.001;
|
305 |
res[2] = eta +1;
|
306 |
}
|
307 |
|
308 |
if( phi==0) {
|
309 |
res[1] = 360;
|
310 |
res[3] = 360;
|
311 |
}
|
312 |
else {
|
313 |
res[1] = phi+0.001;
|
314 |
res[3] = phi;
|
315 |
}
|
316 |
|
317 |
|
318 |
|
319 |
|
320 |
}
|
321 |
|
322 |
|
323 |
|
324 |
////check crystal at boader of em obj boader
|
325 |
|
326 |
int IsatBoaderEMObjPhi(int iphi){
|
327 |
|
328 |
// if( iphi ==0 || iphi ==1) return 1;
|
329 |
|
330 |
if( iphi%20 ==0 || (iphi-1)%20 ==0) return 1;
|
331 |
|
332 |
return 0;
|
333 |
|
334 |
}
|
335 |
|
336 |
int IsatBoaderEMObjEta(int ieta){
|
337 |
|
338 |
if( ieta ==0 || ieta == -1) return 1;
|
339 |
if( ieta ==19 || ieta==20) return 1;
|
340 |
if( ieta ==39 || ieta==40) return 1;
|
341 |
if( ieta == 59 || ieta ==60) return 1;
|
342 |
|
343 |
|
344 |
if( ieta==-20 || ieta==-21) return 1;
|
345 |
if( ieta==-40 || ieta==-41) return 1;
|
346 |
if( ieta==-60 || ieta==-61) return 1;
|
347 |
|
348 |
|
349 |
return 0;
|
350 |
|
351 |
}
|
352 |
|
353 |
|
354 |
|
355 |
//convert ietaTT , iphiTT to ieta,iphi of central crystal
|
356 |
|
357 |
void convertindTTindCrystal(int ietaT,int iphiT, int &ieta, int &iphi){
|
358 |
|
359 |
if( iphiT >= 71) iphi = (iphiT-71)*5+3;
|
360 |
else if( iphiT >=1 && iphiT <=70){
|
361 |
iphi = (iphiT+1)*5+3;
|
362 |
}else{
|
363 |
cout<<"fatal error ..iphiT "<<iphiT<<endl;
|
364 |
exit(1);
|
365 |
}
|
366 |
|
367 |
ieta = abs(ietaT)*5-2;
|
368 |
|
369 |
if(ietaT<0) ieta *= -1;
|
370 |
|
371 |
|
372 |
if( ieta >85 || ieta <-85 || ieta ==0){
|
373 |
cout<<"convertindTTindCrystal... "<<ieta<<" "<<ietaT<<endl;
|
374 |
exit(1);
|
375 |
}
|
376 |
|
377 |
if( iphi <0 || iphi >360){
|
378 |
cout<<"convertindTTindCrystal... "<<iphi<<" "<<iphiT<<endl;
|
379 |
exit(1);
|
380 |
}
|
381 |
|
382 |
}
|
383 |
|
384 |
|
385 |
////invariant mass of two obejcts given, pid each.
|
386 |
void calcPairPtEtaPhi(float pt[2],float eta[2],float phi[2],int pid1,int pid2,float res[]){
|
387 |
//void calcPairMuPht(double pt[2],double eta[2],double phi[2],int pid1,int pid2,double res[]){
|
388 |
|
389 |
TLorentzVector vpht[2];
|
390 |
|
391 |
TLorentzVector vpair;
|
392 |
|
393 |
double mass[2]={0,0};
|
394 |
|
395 |
if(pid1==11) mass[0] = 0.511*0.001;
|
396 |
else if(pid1==13) mass[0] = 0.105658;
|
397 |
else if(pid1==22) mass[0] = 0;
|
398 |
else{
|
399 |
cout<<"calcPairMuPht, mass.pid1 "<<endl;
|
400 |
exit(1);
|
401 |
}
|
402 |
|
403 |
if(pid2==11) mass[1] = 0.511*0.001;
|
404 |
else if(pid2==13) mass[1] = 0.105658;
|
405 |
else if(pid2 ==22) mass[1] = 0;
|
406 |
else {
|
407 |
cout<<"calcPairMuPht, mass. pid2"<<endl;
|
408 |
exit(1);
|
409 |
}
|
410 |
|
411 |
|
412 |
|
413 |
|
414 |
for( int j= 0; j<2; j++){
|
415 |
|
416 |
double p = pt[j]/sin(2*atan(exp(-eta[j])));
|
417 |
double e = sqrt(p*p+mass[j]*mass[j]);
|
418 |
double px = p * sin ( 2*atan(exp(-eta[j]))) * cos(phi[j]);
|
419 |
double py = p * sin ( 2*atan(exp(-eta[j]))) * sin(phi[j]);
|
420 |
double pz = p * cos ( 2*atan(exp(-eta[j]))) ;
|
421 |
|
422 |
vpht[j].SetXYZT(px,py,pz,e);
|
423 |
|
424 |
}
|
425 |
|
426 |
vpair = vpht[0] + vpht[1];
|
427 |
|
428 |
res[0] = vpair.M();
|
429 |
res[1] = vpair.Eta();
|
430 |
res[2] = vpair.Phi();
|
431 |
res[3] = vpair.Pt();
|
432 |
res[4] = vpht[0].DeltaR(vpht[1]);
|
433 |
|
434 |
|
435 |
///cout<<"dot: "<< vpht[0].E() <<" "<< vpht[1].E()<< " "<< vpht[0].X() <<" "<< vpht[1].X()<<" "<< vpht[0].Y() <<" "<< vpht[1].Y() <<" "<< vpht[0].Z() <<" "<< vpht[1].Z()<<endl;
|
436 |
|
437 |
|
438 |
// res[5] = vpht[0].Dot(vpht[1])/vpht[0].P()/vpht[1].P();
|
439 |
|
440 |
|
441 |
|
442 |
}
|
443 |
|
444 |
|
445 |
|
446 |
|
447 |
|
448 |
|
449 |
|
450 |
|
451 |
|
452 |
////invariant mass of two obejcts given, pid each.
|
453 |
//void calcMass3Objects(float pt[3],float eta[3],float phi[3],int pid1,int pid2,int pid3,float res[]){
|
454 |
void calcMass3Objects(double pt[3],double eta[3],double phi[3],int pid1,int pid2,int pid3,double res[]){
|
455 |
|
456 |
TLorentzVector vpht[3];
|
457 |
|
458 |
TLorentzVector vpair;
|
459 |
|
460 |
float mass[3]={0,0,0};
|
461 |
|
462 |
if(pid1==11) mass[0] = 0.511*0.001;
|
463 |
else if(pid1==13) mass[0] = 0.105658;
|
464 |
else if(pid1==22) mass[0] = 0;
|
465 |
else{
|
466 |
cout<<"calcPairMuPht, mass.pid1 "<<endl;
|
467 |
exit(1);
|
468 |
}
|
469 |
|
470 |
if(pid2==11) mass[1] = 0.511*0.001;
|
471 |
else if(pid2==13) mass[1] = 0.105658;
|
472 |
else if(pid2 ==22) mass[1] = 0;
|
473 |
else {
|
474 |
cout<<"calcPairMuPht, mass. pid2"<<endl;
|
475 |
exit(1);
|
476 |
}
|
477 |
|
478 |
if(pid3==11) mass[2] = 0.511*0.001;
|
479 |
else if(pid3==13) mass[2] = 0.105658;
|
480 |
else if(pid3 ==22) mass[2] = 0;
|
481 |
else {
|
482 |
cout<<"calcPairMuPht, mass. pid3"<<endl;
|
483 |
exit(1);
|
484 |
}
|
485 |
|
486 |
|
487 |
|
488 |
|
489 |
for( int j= 0; j<3; j++){
|
490 |
|
491 |
float p = pt[j]/sin(2*atan(exp(-eta[j])));
|
492 |
float e = sqrt(p*p+mass[j]*mass[j]);
|
493 |
float px = p * sin ( 2*atan(exp(-eta[j]))) * cos(phi[j]);
|
494 |
float py = p * sin ( 2*atan(exp(-eta[j]))) * sin(phi[j]);
|
495 |
float pz = p * cos ( 2*atan(exp(-eta[j]))) ;
|
496 |
|
497 |
vpht[j].SetXYZT(px,py,pz,e);
|
498 |
|
499 |
}
|
500 |
|
501 |
vpair = vpht[0] + vpht[1] + vpht[2];
|
502 |
|
503 |
res[0] = vpair.M();
|
504 |
res[1] = vpair.Eta();
|
505 |
res[2] = vpair.Phi();
|
506 |
res[3] = vpair.Pt();
|
507 |
res[4] = vpht[0].DeltaR(vpht[1]);
|
508 |
|
509 |
|
510 |
|
511 |
|
512 |
|
513 |
}
|
514 |
|
515 |
|
516 |
|
517 |
|
518 |
|
519 |
|
520 |
void printRatioTwoHist(TH1F *h1, TH1F *h2){
|
521 |
|
522 |
int nbins = h1->GetNbinsX();
|
523 |
|
524 |
float xmin = h1->GetXaxis()->GetXmin() ;
|
525 |
float xmax = h1->GetXaxis()->GetXmax() ;
|
526 |
|
527 |
TH1F *hh = new TH1F("hh","eff",nbins,xmin,xmax);
|
528 |
|
529 |
|
530 |
for(int j=1; j<= nbins; j++){
|
531 |
|
532 |
float y1 = h1->GetBinContent(j);
|
533 |
float y2 = h2->GetBinContent(j);
|
534 |
|
535 |
float eff = 0;
|
536 |
float effErr = 0;
|
537 |
if(y1>0 && y2>0){
|
538 |
eff = y2/y1;
|
539 |
effErr = sqrt(eff*(1-eff)/y1);
|
540 |
|
541 |
hh->SetBinContent(j,eff);
|
542 |
hh->SetBinError(j,effErr);
|
543 |
}
|
544 |
}
|
545 |
|
546 |
// TCanvas *can0 = new TCanvas("can0","c000",200,10,550,500);
|
547 |
hh->Draw();
|
548 |
|
549 |
|
550 |
}
|
551 |
|
552 |
double etaTransformation( float EtaParticle , float Zvertex) {
|
553 |
|
554 |
//---Definitions
|
555 |
const float pi = 3.1415927;
|
556 |
|
557 |
//---Definitions for ECAL
|
558 |
const float R_ECAL = 136.5;
|
559 |
const float Z_Endcap = 328.0;
|
560 |
const float etaBarrelEndcap = 1.479;
|
561 |
|
562 |
//---ETA correction
|
563 |
|
564 |
float Theta = 0.0 ;
|
565 |
float ZEcal = R_ECAL*sinh(EtaParticle)+Zvertex;
|
566 |
|
567 |
if(ZEcal != 0.0) Theta = atan(R_ECAL/ZEcal);
|
568 |
if(Theta<0.0) Theta = Theta+pi ;
|
569 |
double ETA = - log(tan(0.5*Theta));
|
570 |
|
571 |
if( fabs(ETA) > etaBarrelEndcap )
|
572 |
{
|
573 |
float Zend = Z_Endcap ;
|
574 |
if(EtaParticle<0.0 ) Zend = -Zend ;
|
575 |
float Zlen = Zend - Zvertex ;
|
576 |
float RR = Zlen/sinh(EtaParticle);
|
577 |
Theta = atan(RR/Zend);
|
578 |
if(Theta<0.0) Theta = Theta+pi ;
|
579 |
ETA = - log(tan(0.5*Theta));
|
580 |
}
|
581 |
//---Return the result
|
582 |
return ETA;
|
583 |
//---end
|
584 |
}
|
585 |
|
586 |
////transform eta ( z, pho), to eta at ecal ( w.r.t 0,0,0,)
|
587 |
double ecalEta(double EtaParticle ,double Zvertex, double RhoVertex){
|
588 |
|
589 |
|
590 |
// const Double_t PI = 3.1415927;
|
591 |
double PI = acos(-1);
|
592 |
|
593 |
//---Definitions for ECAL
|
594 |
double R_ECAL = 136.5;
|
595 |
double Z_Endcap = 328.0;
|
596 |
double etaBarrelEndcap = 1.479;
|
597 |
|
598 |
if (EtaParticle!= 0.)
|
599 |
{
|
600 |
double Theta = 0.0 ;
|
601 |
double ZEcal = (R_ECAL-RhoVertex)*sinh(EtaParticle)+Zvertex;
|
602 |
|
603 |
if(ZEcal != 0.0) Theta = atan(R_ECAL/ZEcal);
|
604 |
if(Theta<0.0) Theta = Theta+PI;
|
605 |
|
606 |
double ETA = - log(tan(0.5*Theta));
|
607 |
|
608 |
if( fabs(ETA) > etaBarrelEndcap )
|
609 |
{
|
610 |
double Zend = Z_Endcap ;
|
611 |
if(EtaParticle<0.0 ) Zend = -Zend ;
|
612 |
double Zlen = Zend - Zvertex ;
|
613 |
double RR = Zlen/sinh(EtaParticle);
|
614 |
Theta = atan((RR+RhoVertex)/Zend);
|
615 |
if(Theta<0.0) Theta = Theta+PI;
|
616 |
ETA = - log(tan(0.5*Theta));
|
617 |
}
|
618 |
return ETA;
|
619 |
}
|
620 |
else
|
621 |
{
|
622 |
return EtaParticle;
|
623 |
}
|
624 |
}
|
625 |
|
626 |
|
627 |
double ecalPhi(double phi,double x0,double y0){
|
628 |
|
629 |
//double R_ECAL = 136.5; ///cm
|
630 |
double r = 136.5;
|
631 |
|
632 |
double r0 = sqrt(x0*x0 + y0*y0);
|
633 |
|
634 |
if(r0<1E-5) return phi;
|
635 |
|
636 |
if( r0 >= r){
|
637 |
cout<<"warning. ecalPhi vtx outside ecal return input" << r0 <<" "<< r <<endl;
|
638 |
return phi;
|
639 |
}
|
640 |
|
641 |
double theta0 ;
|
642 |
if(fabs(y0)>0) theta0= y0/fabs(y0) * acos(x0/r0);
|
643 |
else theta0 = acos(x0/r0);
|
644 |
|
645 |
/// cout<<theta0<<" "<<phi<<endl;
|
646 |
|
647 |
double theta = phi + asin( r0/r *sin(theta0-phi));
|
648 |
|
649 |
//phinorm2(theta);
|
650 |
double PI = acos(-1);
|
651 |
while ( theta < -PI) theta += PI;
|
652 |
while ( theta > PI) theta -= PI;
|
653 |
|
654 |
return theta;
|
655 |
|
656 |
|
657 |
}
|