1 |
|
2 |
|
3 |
void get_xyzEBrechits(){
|
4 |
TChain *ch = new TChain("Analysis");
|
5 |
ch->Add("xyzECAL.root");
|
6 |
|
7 |
ch->SetBranchAddress("xEBAll",xEBAll);
|
8 |
ch->SetBranchAddress("yEBAll",yEBAll);
|
9 |
ch->SetBranchAddress("zEBAll",zEBAll);
|
10 |
ch->SetBranchAddress("etaEBAll",etaEBAll);
|
11 |
ch->SetBranchAddress("phiEBAll",phiEBAll);
|
12 |
|
13 |
|
14 |
ch->SetBranchAddress("dxEBAll",dxEBAll);
|
15 |
ch->SetBranchAddress("dyEBAll",dyEBAll);
|
16 |
ch->SetBranchAddress("dzEBAll",dzEBAll);
|
17 |
|
18 |
|
19 |
ch->SetBranchAddress("xEEAll",xEEAll);
|
20 |
ch->SetBranchAddress("yEEAll",yEEAll);
|
21 |
ch->SetBranchAddress("zEEAll",zEEAll);
|
22 |
|
23 |
ch->SetBranchAddress("dxEEAll",dxEEAll);
|
24 |
ch->SetBranchAddress("dyEEAll",dyEEAll);
|
25 |
ch->SetBranchAddress("dzEEAll",dzEEAll);
|
26 |
|
27 |
|
28 |
|
29 |
ch->SetBranchAddress("etaEEAll",etaEEAll);
|
30 |
ch->SetBranchAddress("phiEEAll",phiEEAll);
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
ch->GetEntry(0);
|
37 |
|
38 |
ch->Delete();
|
39 |
|
40 |
cout<<"got xyzEcal.."<<endl;
|
41 |
|
42 |
|
43 |
|
44 |
}
|
45 |
|
46 |
|
47 |
/////////////////////////////////////////////////////////////////////////////////////////////////
|
48 |
|
49 |
void convxtalid(Int_t &nphi,Int_t &neta)
|
50 |
{
|
51 |
// Changed to what Yong's convention; output will give just two indices
|
52 |
// phi is unchanged; only eta now runs from
|
53 |
//
|
54 |
// 03/01/2008 changed to the new definition in CMSSW. The output is still the same...
|
55 |
// Barrel only
|
56 |
// Output nphi 0...359; neta 0...84; nside=+1 (for eta>0), or 0 (for eta<0).
|
57 |
// neta will be [-85,-1] , or [0,84], the minus sign indicates the z<0 side.
|
58 |
|
59 |
if(neta > 0) neta -= 1;
|
60 |
if(nphi > 359) nphi=nphi-360;
|
61 |
|
62 |
// final check
|
63 |
if(nphi >359 || nphi <0 || neta< -85 || neta > 84)
|
64 |
{
|
65 |
cout <<" output not in range: "<< nphi << " " << neta << " " <<endl;
|
66 |
exit(1);
|
67 |
}
|
68 |
} //end of convxtalid
|
69 |
|
70 |
|
71 |
// Calculate the distance in xtals taking into account possibly different sides
|
72 |
// change to coincide with yongs definition
|
73 |
Int_t diff_neta(Int_t neta1, Int_t neta2){
|
74 |
Int_t mdiff;
|
75 |
mdiff=abs(neta1-neta2);
|
76 |
return mdiff;
|
77 |
}
|
78 |
|
79 |
// Calculate the absolute distance in xtals taking into account the periodicity of the Barrel
|
80 |
Int_t diff_nphi(Int_t nphi1,Int_t nphi2) {
|
81 |
Int_t mdiff;
|
82 |
mdiff=abs(nphi1-nphi2);
|
83 |
if (mdiff > (360-abs(nphi1-nphi2))) mdiff=(360-abs(nphi1-nphi2));
|
84 |
return mdiff;
|
85 |
}
|
86 |
|
87 |
// Calculate the distance in xtals taking into account possibly different sides
|
88 |
// Then the distance would be from the 1st to the 2nd argument
|
89 |
// _s means that it gives the sign; the only difference from the above !
|
90 |
// also changed to coincide with Yong's definition
|
91 |
Int_t diff_neta_s(Int_t neta1, Int_t neta2){
|
92 |
Int_t mdiff;
|
93 |
mdiff=(neta1-neta2);
|
94 |
return mdiff;
|
95 |
}
|
96 |
|
97 |
// Calculate the distance in xtals taking into account the periodicity of the Barrel
|
98 |
Int_t diff_nphi_s(Int_t nphi1,Int_t nphi2) {
|
99 |
Int_t mdiff;
|
100 |
if(abs(nphi1-nphi2) < (360-abs(nphi1-nphi2))) {
|
101 |
mdiff=nphi1-nphi2;
|
102 |
}
|
103 |
else {
|
104 |
mdiff=360-abs(nphi1-nphi2);
|
105 |
if(nphi1>nphi2) mdiff=-mdiff;
|
106 |
}
|
107 |
return mdiff;
|
108 |
}
|
109 |
|