1 |
|
2 |
|
3 |
TF1* fitgaus(TH1F *hist,float low, float high,float res[]){
|
4 |
|
5 |
// Float_t rms = hist->GetRMS();
|
6 |
// Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
7 |
// gStyle->SetOptFit(111111);
|
8 |
|
9 |
TF1 *f1 = new TF1("f1","gaus",low,high);
|
10 |
|
11 |
|
12 |
|
13 |
hist->Fit("f1","RQ");
|
14 |
Float_t sigma = f1->GetParameter(2);
|
15 |
Float_t mean = f1->GetParameter(1);
|
16 |
float sigerr = f1->GetParError(2);
|
17 |
res[0] = mean;
|
18 |
res[1] = f1->GetParError(1);
|
19 |
res[2] = sigma;
|
20 |
res[3] = sigerr;
|
21 |
res[4] = mean;
|
22 |
res[5] = f1->GetParError(1);
|
23 |
res[6] = sigma;
|
24 |
|
25 |
|
26 |
return f1;
|
27 |
|
28 |
}
|
29 |
|
30 |
|
31 |
|
32 |
TF1* fitgausD(TH1D *hist,float low, float high,float res[]){
|
33 |
|
34 |
// Float_t rms = hist->GetRMS();
|
35 |
// Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
36 |
// gStyle->SetOptFit(111111);
|
37 |
|
38 |
TF1 *f1 = new TF1("f1","gaus",low,high);
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
hist->Fit("f1","RQ");
|
44 |
Float_t sigma = f1->GetParameter(2);
|
45 |
Float_t mean = f1->GetParameter(1);
|
46 |
float sigerr = f1->GetParError(2);
|
47 |
res[0] = mean;
|
48 |
res[1] = f1->GetParError(1);
|
49 |
res[3] = sigma;
|
50 |
res[2] = sigerr;
|
51 |
res[4] = mean;
|
52 |
res[5] = f1->GetParError(1);
|
53 |
res[6] = sigma;
|
54 |
|
55 |
|
56 |
return f1;
|
57 |
|
58 |
}
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
TF1* fitgauswind(TH1F *hist, Float_t mins, Float_t maxs){
|
64 |
|
65 |
float res[20];
|
66 |
|
67 |
|
68 |
Float_t rms = hist->GetRMS();
|
69 |
Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
70 |
///gStyle->SetOptFit(111111);
|
71 |
|
72 |
TF1 *f1 = new TF1("f1","gaus",maxbin-2*rms, maxbin+2*rms);
|
73 |
hist->Fit("f1","R0Q");
|
74 |
Float_t sigma = f1->GetParameter(2);
|
75 |
Float_t mean = f1->GetParameter(1);
|
76 |
// float sigerr = f1->GetParError(2);
|
77 |
|
78 |
for( int ll=0; ll<10; ll++){
|
79 |
f1 = fitgaus(hist,mean-mins*sigma, mean+maxs*sigma,res);
|
80 |
if(fabs(sigma-res[6])>0.001){
|
81 |
sigma = res[6];
|
82 |
mean = res[4];
|
83 |
}
|
84 |
else
|
85 |
break;
|
86 |
}
|
87 |
|
88 |
return f1;
|
89 |
|
90 |
}
|
91 |
|
92 |
|
93 |
void fitgauswindRefit(TH1F *hist,float res[]){
|
94 |
|
95 |
Float_t rms = hist->GetRMS();
|
96 |
Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
97 |
///gStyle->SetOptFit(111111);
|
98 |
|
99 |
TF1 *f1 = new TF1("f1","gaus",maxbin-2*rms, maxbin+2*rms);
|
100 |
hist->Fit("f1","RQ");
|
101 |
|
102 |
Float_t sigma = f1->GetParameter(2);
|
103 |
Float_t mean = f1->GetParameter(1);
|
104 |
|
105 |
TF1 *f2 = new TF1("f2","gaus",mean-5*sigma, mean+5*sigma);
|
106 |
for(int j=0;j<3; j++){
|
107 |
f2->SetParameter(j,f1->GetParameter(j));
|
108 |
}
|
109 |
hist->Fit("f2","RQ");
|
110 |
|
111 |
sigma = f2->GetParameter(2);
|
112 |
mean = f2->GetParameter(1);
|
113 |
float sigerr = f2->GetParError(2);
|
114 |
|
115 |
res[0] = mean;
|
116 |
res[1] = f2->GetParError(1);
|
117 |
res[2] = sigma;
|
118 |
res[3] = sigerr;
|
119 |
res[4] = mean;
|
120 |
res[5] = f2->GetParError(1);
|
121 |
res[6] = sigma;
|
122 |
|
123 |
}
|
124 |
|
125 |
|
126 |
|
127 |
|
128 |
void fitgauswind2(TH1F *hist, Float_t mins, Float_t maxs,float res[]){
|
129 |
|
130 |
|
131 |
Float_t rms = hist->GetRMS();
|
132 |
Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
133 |
///gStyle->SetOptFit(111111);
|
134 |
|
135 |
TF1 *f1 = new TF1("f1","gaus",maxbin-2*rms, maxbin+2*rms);
|
136 |
hist->Fit("f1","R0Q");
|
137 |
Float_t sigma = f1->GetParameter(2);
|
138 |
Float_t mean = f1->GetParameter(1);
|
139 |
// float sigerr = f1->GetParError(2);
|
140 |
|
141 |
for( int ll=0; ll<10; ll++){
|
142 |
f1 = fitgaus(hist,mean-mins*sigma, mean+maxs*sigma,res);
|
143 |
if(fabs(sigma-res[6])>0.001){
|
144 |
sigma = res[6];
|
145 |
mean = res[4];
|
146 |
}
|
147 |
else
|
148 |
break;
|
149 |
}
|
150 |
|
151 |
// return f1;
|
152 |
|
153 |
}
|
154 |
|
155 |
|
156 |
|
157 |
void fitgauswindD(TH1D *hist, Float_t mins, Float_t maxs,float res[]){
|
158 |
|
159 |
|
160 |
Float_t rms = hist->GetRMS();
|
161 |
Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
162 |
///gStyle->SetOptFit(111111);
|
163 |
|
164 |
hist->GetXaxis()->SetRangeUser(maxbin-3*rms, maxbin+3*rms);
|
165 |
|
166 |
// cout<<"maxbin: "<< maxbin <<" "<< maxbin-2*rms <<" "<< maxbin+2*rms <<endl;
|
167 |
|
168 |
|
169 |
TF1 *f1 = new TF1("f1","gaus",maxbin-2*rms, maxbin+2*rms);
|
170 |
hist->Fit("f1","R0Q");
|
171 |
Float_t sigma = f1->GetParameter(2);
|
172 |
Float_t mean = f1->GetParameter(1);
|
173 |
// float sigerr = f1->GetParError(2);
|
174 |
|
175 |
//cout<<"maxbin_iter: "<< maxbin <<" "<< maxbin-2*rms <<" "<< maxbin+2*rms <<endl;
|
176 |
|
177 |
for( int ll=0; ll<10; ll++){
|
178 |
|
179 |
// cout<<"ll: "<<ll <<" "<< mean <<" "<< sigma <<endl;
|
180 |
|
181 |
f1 = fitgausD(hist,mean-mins*sigma, mean+maxs*sigma,res);
|
182 |
if(fabs(sigma-res[6])>0.001){
|
183 |
sigma = res[6];
|
184 |
mean = res[4];
|
185 |
}
|
186 |
else
|
187 |
break;
|
188 |
}
|
189 |
|
190 |
// return f1;
|
191 |
|
192 |
}
|
193 |
|
194 |
|
195 |
|
196 |
TF1* fitgausI(TH1I *hist,float low, float high,float res[]){
|
197 |
|
198 |
// Float_t rms = hist->GetRMS();
|
199 |
// Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
200 |
// gStyle->SetOptFit(111111);
|
201 |
|
202 |
TF1 *f1 = new TF1("f1","gaus",low,high);
|
203 |
hist->Fit("f1","RQ");
|
204 |
Float_t sigma = f1->GetParameter(2);
|
205 |
Float_t mean = f1->GetParameter(1);
|
206 |
float sigerr = f1->GetParError(2);
|
207 |
res[0] = mean;
|
208 |
res[1] = f1->GetParError(1);
|
209 |
res[3] = sigma;
|
210 |
res[2] = sigerr;
|
211 |
res[4] = mean;
|
212 |
res[5] = f1->GetParError(1);
|
213 |
res[6] = sigma;
|
214 |
|
215 |
|
216 |
return f1;
|
217 |
|
218 |
}
|
219 |
|
220 |
TF1* fitgauswindI(TH1I *hist, Float_t mins, Float_t maxs){
|
221 |
|
222 |
float res[20];
|
223 |
|
224 |
|
225 |
Float_t rms = hist->GetRMS();
|
226 |
Float_t maxbin = hist->GetMaximumBin() * hist->GetBinWidth(1) +hist->GetXaxis()->GetXmin();
|
227 |
///gStyle->SetOptFit(111111);
|
228 |
|
229 |
TF1 *f1 = new TF1("f1","gaus",maxbin-2*rms, maxbin+2*rms);
|
230 |
hist->Fit("f1","R0Q");
|
231 |
Float_t sigma = f1->GetParameter(2);
|
232 |
Float_t mean = f1->GetParameter(1);
|
233 |
// float sigerr = f1->GetParError(2);
|
234 |
|
235 |
for( int ll=0; ll<10; ll++){
|
236 |
f1 = fitgausI(hist,mean-mins*sigma, mean+maxs*sigma,res);
|
237 |
if(fabs(sigma-res[6])>0.001){
|
238 |
sigma = res[6];
|
239 |
mean = res[4];
|
240 |
}
|
241 |
else
|
242 |
break;
|
243 |
}
|
244 |
|
245 |
return f1;
|
246 |
|
247 |
}
|
248 |
|