ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Friis/TancNote/note/tanc_nn_training.tex
Revision: 1.10
Committed: Wed Apr 28 22:15:10 2010 UTC (15 years ago) by friis
Content type: application/x-tex
Branch: MAIN
Changes since 1.9: +4 -4 lines
Log Message:
Final text tweaks

File Contents

# User Rev Content
1 friis 1.1 The samples used to train the TaNC neural networks are typical of the signals
2     and backgrounds found in common physics analyses using taus. The signal--type
3 friis 1.7 training sample is composed of reconstructed tau--candidates that are matched
4     to generator level hadronic tau decays coming from simulated $Z \rightarrow
5     \tau^{+}\tau^{-}$ events. The background training sample consists of
6     reconstructed tau--candidates in simulated QCD $2\rightarrow2$ hard scattering
7     events. The QCD $P_T$ spectrum is steeply falling, and to obtain sufficient
8     statistics across a broad range of $P_T$ the sample is split into different
9 friis 1.9 $\hat P_{T}$ bins. Each binned QCD sample imposes a generator level cut on the
10 friis 1.10 transverse momentum of the hard interaction. During the evaluation of discrimination
11 friis 1.9 performance the QCD samples are weighted according to their respective
12 friis 1.7 integrated luminosities to remove any effect of the binning.
13 friis 1.2
14 friis 1.1 The signal and background samples are split into five subsamples corresponding
15     to each reconstructed decay mode. An additional selection is applied to each
16     subsample by requiring a ``leading pion'': either a charged hadron or gamma
17     candidate with transverse momentum greater than 5 GeV$/c$. A large number of
18 friis 1.9 QCD training events is required as both the leading pion selection and the
19 friis 1.1 requirement that the decay mode match one of the dominant modes given in table
20 friis 1.9 ~\ref{tab:decay_modes} are effective discriminants. For each subsample,
21 friis 1.10 80\% of the signal and background tau--candidates are used for training the neural
22 friis 1.8 networks by the TMVA software, with half (40\%) used as a validation sample
23 friis 1.9 used to ensure the neural network is not over--trained. The number of signal and background entries
24     used for training and validation in each decay mode subsample is given in table ~\ref{tab:trainingEvents}.
25 friis 1.1
26 friis 1.2 %Chained 100 signal files.
27     %Chained 208 background files.
28     %Total signal entries: 874266
29     %Total background entries: 9526176
30     %Pruning non-relevant entries.
31     %After pruning, 584895 signal and 644315 background entries remain.
32     %**********************************************************************************
33     %*********************************** Summary **************************************
34     %**********************************************************************************
35     %* NumEvents with weight > 0 (Total NumEvents) *
36     %*--------------------------------------------------------------------------------*
37     %*shrinkingConePFTauDecayModeProducer ThreeProngNoPiZero: Signal: 53257(53271) Background:155793(155841)
38     %*shrinkingConePFTauDecayModeProducer ThreeProngOnePiZero: Signal: 13340(13342) Background:135871(135942)
39     %*shrinkingConePFTauDecayModeProducer OneProngTwoPiZero: Signal: 34780(34799) Background:51181(51337)
40     %*shrinkingConePFTauDecayModeProducer OneProngOnePiZero: Signal: 136464(138171) Background:137739(139592)
41     %*shrinkingConePFTauDecayModeProducer OneProngNoPiZero: Signal: 300951(345312) Background:144204(161603)
42    
43 friis 1.1 \begin{table}
44     \centering
45 friis 1.2 \begin{tabular}{lcc}
46     %\multirow{2}{*}{} & \multicolumn{2}{c}{Events} \\
47     & Signal & Background \\
48 friis 1.1 \hline
49 friis 1.2 Total number of tau--candidates & 874266 & 9526176 \\
50     Tau--candidates passing preselection & 584895 & 644315 \\
51     Tau--candidates with $W(P_T,\eta)>0$ & 538792 & 488917 \\
52 friis 1.1 \hline
53 friis 1.2 Decay Mode & \multicolumn{2}{c}{Training Events} \\
54 friis 1.1 \hline
55 friis 1.2 $\pi^{-}$ & 300951 & 144204 \\
56     $\pi^{-}\pi^0$ & 135464 & 137739 \\
57     $\pi^{-}\pi^0\pi^0$ & 34780 & 51181 \\
58     $\pi^{-}\pi^{-}\pi^{+}$ & 53247 & 155793 \\
59     $\pi^{-}\pi^{-}\pi^{+}\pi^0$ & 13340 & 135871 \\
60 friis 1.1 \end{tabular}
61     \label{tab:trainingEvents}
62 friis 1.9 \caption{Number of events used for neural network training and validation for each
63 friis 1.1 selected decay mode.}
64     \end{table}
65    
66 friis 1.9 The remaining 20\% of the signal and background samples are
67 friis 1.8 reserved as a statistically independent sample to evaluate the performance of
68     the neural nets after the training is completed. The TaNC uses the ``MLP''
69     neural network implementation provided by the TMVA software package, described
70     in ~\cite{TMVA}. The ``MLP'' classifier is a feed-forward artificial neural
71     network. There are two layers of hidden nodes and a single node in the output
72     layer. The hyperbolic tangent function is used for the neuron activation
73     function.
74     %The number of hidden nodes in the first and second layers are chosen
75     %according to Kolmogorov's theorem~\cite{kolmogorovsTheorem}; the number of
76     %hidden nodes in the first (second) layer is $N+1 (2N+1)$, where $N$ is the
77     %number of input observables.
78     The number of hidden nodes in the first (second) layers are chosen
79 friis 1.9 to be $N+1 (2N+1)$, respectively, where $N$ is the
80 friis 1.8 number of input observables. According to the Kolmogorov's theorem~\fixme{need to find cite}
81     The neural network is trained for 500 epochs. At
82 friis 1.9 ten epoch intervals, the neural network error is computed using the validation sample to check for
83 friis 1.8 overtraining (see figure~\ref{fig:overTrainCheck}). The neural network error
84     $E$ is defined~\cite{TMVA} as
85    
86 friis 1.5 \begin{equation}
87     E = \frac{1}{2} \sum_{i=1}^N (y_{ANN,i} - \hat y_i)^2
88     \label{eq:NNerrorFunc}
89     %note - not right for weighted dists?
90     \end{equation}
91     where $N$ is the number of training events, $y_{ANN,i}$ is the neural network output
92     for the $i$th training event, and $y_i$ is the desired (-1 for background, 1 for signal) output
93 friis 1.7 the $i$th event. No evidence of over--training is observed.
94 friis 1.4
95 friis 1.8 \begin{figure}[thbp]
96 friis 1.4 \setlength{\unitlength}{1mm}
97     \begin{center}
98     \begin{picture}(150, 195)(0,0)
99     \put(0.5, 130)
100     {\mbox{\includegraphics*[height=60mm]{figures/overtrainCheck_OneProngNoPiZero.pdf}}}
101     \put(65, 130)
102     {\mbox{\includegraphics*[height=60mm]{figures/overtrainCheck_OneProngOnePiZero.pdf}}}
103     \put(0.5, 65)
104     {\mbox{\includegraphics*[height=60mm]{figures/overtrainCheck_OneProngTwoPiZero.pdf}}}
105     \put(65, 65)
106     {\mbox{\includegraphics*[height=60mm]{figures/overtrainCheck_ThreeProngNoPiZero.pdf}}}
107     \put(33, 0)
108     {\mbox{\includegraphics*[height=60mm]{figures/overtrainCheck_ThreeProngOnePiZero.pdf}}}
109     \end{picture}
110 friis 1.5 \caption{
111 friis 1.6 Neural network classification error for training (solid red) and testing
112     (dashed blue) samples at ten epoch intervals over the 500 training epochs for each
113 friis 1.5 decay mode neural network. The vertical axis represents the classification
114     error, defined by equation~\ref{eq:NNerrorFunc}. N.B. that the choice of
115     hyperbolic tangent for neuron activation functions results in the desired
116 friis 1.10 outputs for signal and background to be 1 and -1, respectively. This results
117 friis 1.5 in the computed neural network error being larger by a factor of four than
118     the case where the desired outputs are (0, 1). Classifier over--training
119     would be evidenced by divergence of the classification error of the training
120     and testing samples, indicating that the neural net was optimizing about
121 friis 1.6 statistical fluctuations in the training sample.
122 friis 1.4 }
123     \label{fig:overTrainCheck}
124     \end{center}
125     \end{figure}
126    
127 friis 1.1
128 friis 1.9 The neural networks use as input observables the transverse momentum and $\eta$
129     of the tau--candidates. These observables are included as their correlations
130     with other observables can increase the separation power of the ensemble of
131     observables. For example, the opening angle in $\Delta R$ for signal
132     tau--candidates is inversely related to the transverse momentum, while for
133     background events the correlation is very small~\cite{DavisTau}. In the
134     training signal and background samples, there is significant discrimination
135     power in the $P_T$ spectrum. However, it is desirable to eliminate any
136     systematic dependence of the neural network output on $P_T$ and $\eta$, as in
137     practice the TaNC will be presented with tau--candidates whose $P_T-\eta$
138     spectrum will be analysis dependent. The dependence on $P_T$ and $\eta$ is
139     removed by applying a $P_T$ and $\eta$ dependent weight to the tau--candidates
140     when training the neural nets.
141    
142     The weights are defined such that in any region in the vector space spanned by
143     $P_T$ and $\eta$ where the signal sample and background sample probability
144     density functions are different, the sample with higher probability density is
145     weighted such that the samples have identical $P_T-\eta$ probability
146     distributions. This removes regions of $P_T-\eta$ space where the training
147     sample is exclusively signal or background. The weights are computed according to
148 friis 1.2 \begin{align*}
149     W(P_T, \eta) &= {\rm less}(p_{sig}(P_T, \eta), p_{bkg}(P_T, \eta))\\
150     w_{sig}(P_T, \eta) &= W(P_T, \eta)/p_{sig}(P_T, \eta) \\
151     w_{bkg}(P_T, \eta) &= W(P_T, \eta)/p_{bkg}(P_T, \eta)
152     \end{align*}
153 friis 1.7 where $p_{sig}(P_T,\eta)$ and $p_{bkg}(P_T,\eta)$ are the probability densities of
154 friis 1.10 the signal and background samples after the ``leading pion'' and dominant decay mode
155 friis 1.2 selections. Figure~\ref{fig:nnTrainingWeights} shows the signal and background
156     training $P_T$ distributions before and after the weighting is applied.
157    
158    
159 friis 1.8 \begin{figure}[thbp]
160 friis 1.2 \setlength{\unitlength}{1mm}
161     \begin{center}
162     \begin{picture}(150,60)(0,0)
163     \put(10.5, 2){
164     \mbox{\includegraphics*[height=58mm]{figures/training_weights_unweighted.pdf}}}
165     \put(86.0, 2){
166     \mbox{\includegraphics*[height=58mm]{figures/training_weights_weighted.pdf}}}
167     %\put(-5.5, 112.5){\small (a)}
168     %\put(72.0, 112.5){\small (b)}
169     %\put(-5.5, 54.5){\small (c)}
170     %\put(72.0, 54.5){\small (d)}
171     \end{picture}
172 friis 1.4 \caption{Transverse momentum spectrum of signal and background
173 friis 1.2 tau--candidates used in neural net training before (left) and after (right) the
174     application of $P_T-\eta$ dependent weight function. Application of the weights
175     lowers the training significance of tau--candidates in regions of $P_T-\eta$
176     phase space where either the signal or background samples has an excess of
177     events. }
178     \label{fig:nnTrainingWeights}
179     \end{center}
180     \end{figure}
181