ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Friis/TancNote/note/tanc_nn_training.tex
Revision: 1.2
Committed: Tue Apr 6 17:11:02 2010 UTC (15 years, 1 month ago) by friis
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +83 -27 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 friis 1.1 The samples used to train the TaNC neural networks are typical of the signals
2     and backgrounds found in common physics analyses using taus. The signal--type
3     training sample is composed of reconstucted tau--candidates that are matched to
4     generator level hadronic tau decays coming from simulated $Z \rightarrow
5     \tau^{+}\tau^{-}$ events. The background training sample consists of reconstructed
6 friis 1.2 tau--candidates in simulated QCD $2\rightarrow2$ hard scattering events. The
7     QCD $P_T$ spectrum is steeply falling, and to obtain sufficient statistics
8     across a broad range of $P_T$ the sample is split into different $\hat P_{T}$
9     bins. Each QCD sub-sample imposes a generator level cut on the transverse
10     energy of the hard interaction.
11    
12    
13 friis 1.1 both signal and background samples, 20\% of the events are reserved as a
14     statistically independent sample to evaluate the performance of the neural nets
15     after the training is completed. The TaNC uses the ``MLP'' neural network
16     implementation provided by the TMVA software package, described in ~\cite{TMVA}.
17    
18     The signal and background samples are split into five subsamples corresponding
19     to each reconstructed decay mode. An additional selection is applied to each
20     subsample by requiring a ``leading pion'': either a charged hadron or gamma
21     candidate with transverse momentum greater than 5 GeV$/c$. A large number of
22     QCD training events is required as the leading pion selection and the
23     requirement that the decay mode match one of the dominant modes given in table
24     ~\ref{tab:decay_modes} are both effective discriminants. For each subsample,
25     10000 signal and background tau--candidates are reserved to be used internally
26     by the TMVA software to test for over--training. The number of signal and
27     background entries used for each decay mode subsample is given in table
28     ~\ref{tab:trainingEvents}.
29    
30 friis 1.2 %Chained 100 signal files.
31     %Chained 208 background files.
32     %Total signal entries: 874266
33     %Total background entries: 9526176
34     %Pruning non-relevant entries.
35     %After pruning, 584895 signal and 644315 background entries remain.
36     %**********************************************************************************
37     %*********************************** Summary **************************************
38     %**********************************************************************************
39     %* NumEvents with weight > 0 (Total NumEvents) *
40     %*--------------------------------------------------------------------------------*
41     %*shrinkingConePFTauDecayModeProducer ThreeProngNoPiZero: Signal: 53257(53271) Background:155793(155841)
42     %*shrinkingConePFTauDecayModeProducer ThreeProngOnePiZero: Signal: 13340(13342) Background:135871(135942)
43     %*shrinkingConePFTauDecayModeProducer OneProngTwoPiZero: Signal: 34780(34799) Background:51181(51337)
44     %*shrinkingConePFTauDecayModeProducer OneProngOnePiZero: Signal: 136464(138171) Background:137739(139592)
45     %*shrinkingConePFTauDecayModeProducer OneProngNoPiZero: Signal: 300951(345312) Background:144204(161603)
46    
47 friis 1.1 \begin{table}
48     \centering
49 friis 1.2 \begin{tabular}{lcc}
50     %\multirow{2}{*}{} & \multicolumn{2}{c}{Events} \\
51     & Signal & Background \\
52 friis 1.1 \hline
53 friis 1.2 Total number of tau--candidates & 874266 & 9526176 \\
54     Tau--candidates passing preselection & 584895 & 644315 \\
55     Tau--candidates with $W(P_T,\eta)>0$ & 538792 & 488917 \\
56 friis 1.1 \hline
57 friis 1.2 Decay Mode & \multicolumn{2}{c}{Training Events} \\
58 friis 1.1 \hline
59 friis 1.2 $\pi^{-}$ & 300951 & 144204 \\
60     $\pi^{-}\pi^0$ & 135464 & 137739 \\
61     $\pi^{-}\pi^0\pi^0$ & 34780 & 51181 \\
62     $\pi^{-}\pi^{-}\pi^{+}$ & 53247 & 155793 \\
63     $\pi^{-}\pi^{-}\pi^{+}\pi^0$ & 13340 & 135871 \\
64 friis 1.1 \end{tabular}
65     \label{tab:trainingEvents}
66     \caption{Number of events used for neural network training for each
67     selected decay mode.}
68     \end{table}
69    
70    
71 friis 1.2 The neural nets uses as input variables the transverse momentum and $\eta$ of the
72 friis 1.1 tau--candidates. These variables are included as their correlations with other
73     observables can increase the separation power of the ensemble of observables.
74     For example, the opening angle in $\Delta R$ for signal tau--candidates is
75     inversely related to the transverse momentum, while for background events the
76     correlation is very small (see~\cite{DavisTau}). In the training signal and
77     background samples, there is significant discrimination power in the $P_T$
78     spectrum. However, it is desirable to eliminate any systematic dependence of
79 friis 1.2 the neural network output on $P_T$ and $\eta$, as in use the TaNC will be
80     presented with tau--candidates whose $P_T-\eta$ spectrum will be analysis
81     dependent. The dependence on $P_T$ and $\eta$ is removed by applying a $P_T$ and
82     $\eta$ dependent weight to the tau--candidates when training the neural nets.
83    
84     The weights are defined such that in any region in $P_T-\eta$ where the signal
85     and background probability density function are different, the sample with
86     higher probability density is weighted such that the samples have identical
87     $P_T-\eta$ probability distributions. This removes regions of $P_T-\eta$ space
88     where the training sample is exclusively signal or background. The weights are
89     computed by
90     \begin{align*}
91     W(P_T, \eta) &= {\rm less}(p_{sig}(P_T, \eta), p_{bkg}(P_T, \eta))\\
92     w_{sig}(P_T, \eta) &= W(P_T, \eta)/p_{sig}(P_T, \eta) \\
93     w_{bkg}(P_T, \eta) &= W(P_T, \eta)/p_{bkg}(P_T, \eta)
94     \end{align*}
95     where $p_{sig}(P_T,\eta)$ and $p_{bkg}(P_T,\eta)$ are the probility densities of
96     the signal and background samples after the ``leading pion'' and decay mode
97     selections. Figure~\ref{fig:nnTrainingWeights} shows the signal and background
98     training $P_T$ distributions before and after the weighting is applied.
99    
100    
101     \begin{figure}[t]
102     \setlength{\unitlength}{1mm}
103     \begin{center}
104     \begin{picture}(150,60)(0,0)
105     \put(10.5, 2){
106     \mbox{\includegraphics*[height=58mm]{figures/training_weights_unweighted.pdf}}}
107     \put(86.0, 2){
108     \mbox{\includegraphics*[height=58mm]{figures/training_weights_weighted.pdf}}}
109     %\put(-5.5, 112.5){\small (a)}
110     %\put(72.0, 112.5){\small (b)}
111     %\put(-5.5, 54.5){\small (c)}
112     %\put(72.0, 54.5){\small (d)}
113     \end{picture}
114     \caption{\captiontext Transverse momentum spectrum of signal and background
115     tau--candidates used in neural net training before (left) and after (right) the
116     application of $P_T-\eta$ dependent weight function. Application of the weights
117     lowers the training significance of tau--candidates in regions of $P_T-\eta$
118     phase space where either the signal or background samples has an excess of
119     events. }
120     \label{fig:nnTrainingWeights}
121     \end{center}
122     \end{figure}
123    
124     The
125 friis 1.1
126