ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Friis/TancNote/note/transformation_derivation.tex
Revision: 1.1
Committed: Wed Apr 28 05:58:55 2010 UTC (15 years ago) by friis
Content type: application/x-tex
Branch: MAIN
Log Message:
Lots of grammar and typo fixes

File Contents

# User Rev Content
1 friis 1.1 An artificial neural network maps a point in the space of input observables to
2     some value of neural network output $x$. The neural network training error is
3     given by equation~\ref{eq:NNerrorFunc}. A given point in the vector space
4     spanned by the neural network input observables (denoted as ``feature space''
5     in the following) contributes to the neural network training error $E$ by
6     \begin{equation}
7     E' = (1 - x)^2\cdot\rho^\tau + x^2\cdot\rho^{QCD}
8     \end{equation}
9     where $\rho^\tau (\rho^{QCD})$ denotes the training sample density of the $\tau$ signal
10     and QCD--jet background at that point in feature space.
11    
12     The value $x$ assigned by the neural network to this region in feature space is
13     determined by the requirement of minimal error:
14    
15     \begin{align}
16     \frac{\partial E'}{\partial x} &= 0 \nonumber \\
17     0 &= -2(1-x)\cdot\rho^\tau+2x\cdot\rho^{QCD} \nonumber \\
18     x &= \frac{\rho^\tau} {\rho^\tau + \rho^{QCD}} \label{eq:probFracToX} \\
19     \rho^\tau &= x(\rho^\tau + \rho^{QCD}) \nonumber \\
20     \frac{\rho^{QCD}}{\rho^\tau} &= \frac{1}{x} - 1 \label{eq:rawTransformX}
21     \end{align}
22    
23     N.B. that the ratio $\frac{\rho^{QCD}}{\rho^\tau}$ corresponds to the ratio of
24     the normalized probability density functions of signal and background input
25     observable distributions, i.e. $\int \rho^{\tau} d\vec x = 1$.
26    
27     In the case of multiple neural networks, one can derive a formula that maps the
28     output $x_j$ of the neural network corresponding to decay mode $j$ according to
29     the ``prior probabilities'' $p_j^\tau (p_j^{QCD})$ for true $\tau$ leptons (QCD
30     jets) to pass the pre--selection criteria and be reconstructed with decay mode
31     $j$.
32    
33     By substituting $\rho^s \rightarrow \rho^s p_j^s$ for $s \in \{\tau, QCD\}$ in
34     equation~\ref{eq:probFracToX}, the output $x_j$ can be related to $p_j^\tau (p_j^{QCD})$
35     by
36     \begin{equation}
37     x_j' = \frac{\rho^\tau \cdot p_j^\tau}
38     {\rho^\tau \cdot p_j^\tau + \rho^{QCD} \cdot p_j^{QCD} }
39     = \frac{p_j^\tau}
40     {p_j^\tau + \frac{\rho^{QCD}}{\rho^\tau} \cdot p_j^{QCD} }
41     \label{eq:probFracToXWithPriors}
42     \end{equation}
43    
44     Substituting equation~\ref{eq:rawTransformX} into equation~\ref{eq:probFracToXWithPriors} yields
45     the transformation of the output $x_j$ of the neural neural network corresponding to
46     any selected decay mode $j$ to a single discriminator output $x_j'$ which for a given
47     point on the optimal performance curve should be independent of $j$.
48    
49     \begin{equation}
50     x_j' = \frac{p_j^\tau}
51     {p_j^\tau + \left(\frac{1}{x_j}-1\right)\cdot p_j^{QCD} }
52     \end{equation}
53    
54