ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.25
Committed: Mon Sep 26 15:48:20 2011 UTC (13 years, 7 months ago) by buchmann
Content type: text/plain
Branch: MAIN
CVS Tags: Honeypot, cbaf_2p1ifb
Changes since 1.24: +8 -29 lines
Log Message:
Updated limit script to compute expected limits as well

File Contents

# User Rev Content
1 buchmann 1.1 #include <iostream>
2     #include <vector>
3     #include <sys/stat.h>
4 buchmann 1.6 #include <fstream>
5 buchmann 1.1
6     #include <TCut.h>
7     #include <TROOT.h>
8     #include <TCanvas.h>
9     #include <TMath.h>
10     #include <TColor.h>
11     #include <TPaveText.h>
12     #include <TRandom.h>
13     #include <TH1.h>
14     #include <TH2.h>
15     #include <TF1.h>
16     #include <TSQLResult.h>
17     #include <TProfile.h>
18 buchmann 1.20 #include <TSystem.h>
19     #include "LimitDroplet.C"
20 buchmann 1.1
21     //#include "TTbar_stuff.C"
22     using namespace std;
23    
24     using namespace PlottingSetup;
25    
26    
27     void rediscover_the_top(string mcjzb, string datajzb) {
28 buchmann 1.3 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
29 buchmann 1.1 TCanvas *c3 = new TCanvas("c3","c3");
30     c3->SetLogy(1);
31     vector<float> binning;
32     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
33     /*
34     binning.push_back(50);
35     binning.push_back(100);
36     binning.push_back(150);
37     binning.push_back(200);
38     binning.push_back(500);
39    
40    
41     TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
42     TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
43     // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
44     TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
45     /*
46     ofstream myfile;
47     TH1F *ratio = (TH1F*)observed->Clone();
48     ratio->Divide(dataprediction);
49     ratio->GetYaxis()->SetTitle("Ratio obs/pred");
50     ratio->Draw();
51     c3->SaveAs("testratio.png");
52     myfile.open ("ShapeFit_log.txt");
53     establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
54     myfile.close();
55     */
56    
57    
58     int nbins=100;
59     float low=0;
60     float hi=500;
61     TCanvas *c4 = new TCanvas("c4","c4",900,900);
62     c4->Divide(2,2);
63     c4->cd(1);
64     c4->cd(1)->SetLogy(1);
65     TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
66     TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
67     datapredictiont->Add(datapredictiono,-1);
68 buchmann 1.3 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
69 buchmann 1.1 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
70     datapredictiont->SetMarkerColor(kRed);
71     datapredictiont->SetLineColor(kRed);
72     datapredictiont->Draw();
73     functions[1]->Draw("same");
74     TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
75     title1->Draw();
76    
77     c4->cd(2);
78     c4->cd(2)->SetLogy(1);
79     TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
80     observedt->Draw();
81     datapredictiont->Draw("histo,same");
82     functions[1]->Draw("same");
83     TText *title2 = write_title("Observed and predicted background");
84     title2->Draw();
85    
86     c4->cd(3);
87     c4->cd(3)->SetLogy(1);
88     // TH1F *ratio = (TH1F*)observedt->Clone();
89    
90     TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
91     for(int i=0;i<=nbins;i++) {
92     analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
93     analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
94     }
95     analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
96     analytical_background_prediction->GetYaxis()->CenterTitle();
97     TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
98     analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
99     analytical_background_prediction->SetMarkerSize(0);
100     analytical_background_prediction->Draw("e5");
101     analyticaldrawonly->Draw("histo,same");
102     functions[1]->Draw("same");
103     TText *title3 = write_title("Analytical bg pred histo");
104     title3->Draw();
105    
106     c4->cd(4);
107     // c4->cd(4)->SetLogy(1);
108     vector<float> ratio_binning;
109     ratio_binning.push_back(0);
110     ratio_binning.push_back(5);
111     ratio_binning.push_back(10);
112     ratio_binning.push_back(20);
113     ratio_binning.push_back(50);
114     // ratio_binning.push_back(60);
115     /*
116     ratio_binning.push_back(51);
117     ratio_binning.push_back(52);
118     ratio_binning.push_back(53);
119     ratio_binning.push_back(54);
120     ratio_binning.push_back(55);
121     ratio_binning.push_back(56);
122     ratio_binning.push_back(57);
123     ratio_binning.push_back(58);
124     ratio_binning.push_back(59);
125     ratio_binning.push_back(60);
126     // ratio_binning.push_back(70);*/
127     // ratio_binning.push_back(80);
128     // ratio_binning.push_back(90);
129     ratio_binning.push_back(80);
130     // ratio_binning.push_back(110);
131     ratio_binning.push_back(500);
132    
133     TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
134     TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
135     TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
136     datapredictiontb->Add(datapredictiontbo,-1);
137     TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
138     for(int i=0;i<=ratio_binning.size();i++) {
139     analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
140     analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
141     }
142    
143     TH1F *ratio = (TH1F*) observedtb->Clone();
144     ratio->Divide(datapredictiontb);
145    
146     for (int i=0;i<=ratio_binning.size();i++) {
147 buchmann 1.3 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
148 buchmann 1.1 }
149    
150     // ratio->Divide(datapredictiontb);
151     // ratio->Divide(analytical_background_predictionb);
152     // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
153     // ratio->Divide(analytical_background_prediction);
154     // ratio->Divide(datapredictiont);
155     // ratio->GetYaxis()->SetTitle("obs/pred");
156     // JZBratio->Draw("AP");
157     ratio->GetYaxis()->SetRangeUser(0,10);
158     ratio->Draw();
159     //analytical_background_predictionb->Draw();
160     // JZBratio->SetTitle("");
161     TText *title4 = write_title("Ratio of observed to predicted");
162     title4->Draw();
163    
164     // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
165     CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
166    
167    
168    
169    
170    
171     }
172    
173 buchmann 1.22 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doexpected) {
174 buchmann 1.11 float sigma95=-9.9,sigma95A=-9.9;
175 buchmann 1.15 /*
176     USAGE OF ROOSTATS_CL95
177     " Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n"
178     " LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n"
179     " Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n"
180     " \n"
181     "
182     " Double_t obs_limit = limit.GetObservedLimit(); \n"
183     " Double_t exp_limit = limit.GetExpectedLimit(); \n"
184     " Double_t exp_up = limit.GetOneSigmaHighRange(); \n"
185     " Double_t exp_down = limit.GetOneSigmaLowRange(); \n"
186     " Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n"
187     " Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n"
188     */
189 buchmann 1.12 if(mceff<=0) {
190 buchmann 1.11 write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
191     dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
192     vector<float> sigmas;
193     sigmas.push_back(-1);
194     sigmas.push_back(-1);
195     return sigmas;
196     } else {
197 buchmann 1.15 int nlimittoysused=1;
198 buchmann 1.20
199     ///------------------------------------------ < NEW > ----------------------------------------------------------
200    
201     int secondssince1970=time(NULL);
202     stringstream repname;
203     repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt";
204    
205     /* - report filename [1]
206     - luminosity [2]
207     - lumi uncert [3]
208     - MC efficiency [4]
209     - MC efficiency error [5]
210     - Npred [6]
211     - Nprederr [7]
212     - Nobs [8]
213     - JZB cut [9]
214     - plot name [10]*/
215    
216 buchmann 1.21 dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
217 buchmann 1.20
218 buchmann 1.24 stringstream command;
219     command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/NewLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected;
220 buchmann 1.21 dout << command.str() << endl;
221 buchmann 1.20
222     int retval = 256;
223     int attempts=0;
224     while(!(retval==0||attempts>=5)) {//try up to 5 times
225     attempts++;
226 buchmann 1.21 dout << "Starting limit calculation (LimitCapsule) now : Attempt " << attempts << endl;
227 buchmann 1.20 retval=gSystem->Exec(command.str().c_str());
228     }
229    
230     LimitDroplet limres;
231     limres.readDroplet(repname.str());
232 buchmann 1.21 dout << limres << endl;
233 buchmann 1.20 remove(repname.str().c_str());
234 buchmann 1.22 sigma95=limres.observed;
235 buchmann 1.20
236    
237     ///------------------------------------------ < /NEW > ----------------------------------------------------------
238 buchmann 1.2 vector<float> sigmas;
239 buchmann 1.25 sigmas.push_back(sigma95);
240 buchmann 1.22 if(doexpected) {
241 buchmann 1.25 sigmas.push_back(limres.expected);
242     sigmas.push_back(limres.upper68);
243     sigmas.push_back(limres.lower68);
244     sigmas.push_back(limres.upper95);
245     sigmas.push_back(limres.lower95);
246 buchmann 1.18 }
247 buchmann 1.25
248 buchmann 1.2 return sigmas;
249 buchmann 1.15
250    
251 buchmann 1.25 }//end of mc efficiency is ok
252 buchmann 1.2 }
253    
254 buchmann 1.22 void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doexpected) {
255 buchmann 1.3 dout << "Doing counting experiment ... " << endl;
256 buchmann 1.2 vector<vector<string> > limits;
257     vector<vector<float> > vlimits;
258    
259 buchmann 1.1
260     for(int isample=0;isample<signalsamples.collection.size();isample++) {
261 buchmann 1.2 vector<string> rows;
262     vector<float> vrows;
263 buchmann 1.3 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
264 buchmann 1.2 rows.push_back(signalsamples.collection[isample].samplename);
265 buchmann 1.1 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
266 buchmann 1.3 dout << "_________________________________________________________________________________" << endl;
267 buchmann 1.2 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
268     float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
269     float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
270     float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
271     float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
272 fronga 1.9 float observed,observederr,null,result;
273 buchmann 1.11
274     // fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
275     // observed-=result;//this is the actual excess we see!
276     // float expected=observed/luminosity;
277 buchmann 1.17 string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png"));
278 buchmann 1.3 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
279 buchmann 1.22 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doexpected);
280 buchmann 1.2
281 buchmann 1.22 if(doexpected) {
282 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
283     rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
284 buchmann 1.2 vrows.push_back(sigmas[0]);
285     vrows.push_back(sigmas[1]);
286 buchmann 1.11 // vrows.push_back(expected);
287     vrows.push_back(signalsamples.collection[isample].xs);
288 buchmann 1.2 }
289     else {
290 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
291     rows.push_back(any2string(sigmas[0]));
292 buchmann 1.2 vrows.push_back(sigmas[0]);
293 buchmann 1.11 vrows.push_back(signalsamples.collection[isample].xs);
294     // vrows.push_back(expected);
295 buchmann 1.2 }
296 buchmann 1.1 }//end of bin loop
297 buchmann 1.2 limits.push_back(rows);
298     vlimits.push_back(vrows);
299 buchmann 1.1 }//end of sample loop
300 buchmann 1.12 dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
301 buchmann 1.11 dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl;
302 buchmann 1.3 dout << "\t";
303 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
304 buchmann 1.3 dout << jzbcuts[irow] << "\t";
305 buchmann 1.2 }
306 buchmann 1.3 dout << endl;
307 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
308     for(int ientry=0;ientry<limits[irow].size();ientry++) {
309 buchmann 1.12 if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
310     else dout << " (N/A) \t";
311 buchmann 1.2 }
312 buchmann 1.3 dout << endl;
313 buchmann 1.2 }
314    
315 buchmann 1.22 if(!doexpected) {
316 buchmann 1.12 dout << endl << endl << "LIMITS: (Tex)" << endl;
317 buchmann 1.13 tout << "\\begin{table}[hbtp]" << endl;
318 buchmann 1.21 tout << "\\renewcommand{\\arraystretch}{1.3}" << endl;
319 buchmann 1.13 tout << "\\begin{center}" << endl;
320 buchmann 1.14 tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl;
321 buchmann 1.13 tout << "" << endl;
322 buchmann 1.12 tout << "\\begin{tabular}{ | l | ";
323     for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
324     tout << "} " << endl << " \\hline " << endl << "& \t ";
325 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
326 buchmann 1.12 tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
327 buchmann 1.2 }
328 buchmann 1.12 tout << " \\\\ \\hline " << endl;
329 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
330 buchmann 1.12 tout << limits[irow][0] << " \t";
331 buchmann 1.2 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
332 buchmann 1.12 if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
333     else tout << " & ( N / A ) \t";
334 buchmann 1.11 // dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
335 buchmann 1.2 }
336 buchmann 1.12 tout << " \\\\ \\hline " << endl;
337 buchmann 1.2 }
338 buchmann 1.12 tout << "\\end{tabular}" << endl;
339 buchmann 1.13 tout << " \\end{tabular}"<< endl;
340     tout << "\\end{center}"<< endl;
341     tout << "\\end{table} "<< endl;
342    
343 buchmann 1.2 }//do observed
344 buchmann 1.3
345     dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
346 buchmann 1.11 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
347 buchmann 1.3 for(int icut=0;icut<jzbcuts.size();icut++) {
348 buchmann 1.14 dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl;
349 buchmann 1.3 for(int isample=0;isample<signalsamples.collection.size();isample++) {
350 buchmann 1.11 dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
351 buchmann 1.3 }
352     dout << endl;
353     }
354 buchmann 1.1 }
355    
356    
357    
358 buchmann 1.7 /********************************************************************** new : Limits using SHAPES ***********************************
359    
360    
361     SSSSSSSSSSSSSSS hhhhhhh
362     SS:::::::::::::::Sh:::::h
363     S:::::SSSSSS::::::Sh:::::h
364     S:::::S SSSSSSSh:::::h
365     S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss
366     S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s
367     S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s
368     SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s
369     SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss
370     SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s
371     S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s
372     S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s
373     SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s
374     S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s
375     S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss
376     SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss
377     p:::::p
378     p:::::p
379     p:::::::p
380     p:::::::p
381     p:::::::p
382     ppppppppp
383    
384    
385     *********************************************************************** new : Limits using SHAPES ***********************************/
386    
387 buchmann 1.5
388     void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
389     dout << "Creatig shape templates ... ";
390     if(identifier!="") dout << "for systematic called "<<identifier;
391     dout << endl;
392     int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
393 buchmann 1.6 if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
394 buchmann 1.5
395     TCut limitnJetcut;
396     if(JES==noJES) limitnJetcut=cutnJets;
397     else {
398     if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
399     if(JES==JESup) limitnJetcut=cutnJetsJESup;
400     }
401     TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
402     TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
403     TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
404     TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
405    
406     TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
407     TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
408     TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
409     TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
410    
411     TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
412     TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
413     TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
414     TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
415    
416     TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
417     TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
418     TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
419     TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
420    
421     string obsname="data_obs";
422     string predname="background";
423     string signalname="signal";
424     if(identifier!="") {
425     obsname=("data_"+identifier);
426     predname=("background_"+identifier);
427     signalname="signal_"+identifier;
428     }
429    
430     TH1F *obs = (TH1F*)ZOSSFP->Clone();
431     obs->SetName(obsname.c_str());
432     obs->Write();
433     TH1F *pred = (TH1F*)ZOSSFN->Clone();
434     pred->Add(ZOSOFP,1.0/3);
435     pred->Add(ZOSOFN,-1.0/3);
436     pred->Add(SBOSSFP,1.0/3);
437     pred->Add(SBOSSFN,-1.0/3);
438     pred->Add(SBOSOFP,1.0/3);
439     pred->Add(SBOSOFN,-1.0/3);
440     pred->SetName(predname.c_str());
441     pred->Write();
442    
443     // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
444     // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
445    
446     TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
447     TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
448     Lobs->Add(LZOSSFP);
449     Lpred->Add(LZOSSFN);
450     Lpred->Add(LZOSOFP,1.0/3);
451     Lpred->Add(LZOSOFN,-1.0/3);
452     Lpred->Add(LSBOSSFP,1.0/3);
453     Lpred->Add(LSBOSSFN,-1.0/3);
454     Lpred->Add(LSBOSOFP,1.0/3);
455     Lpred->Add(LSBOSOFN,-1.0/3);
456     TH1F *signal = (TH1F*)Lobs->Clone();
457     signal->Add(Lpred,-1);
458     signal->SetName(signalname.c_str());
459     signal->Write();
460    
461     delete Lobs;
462     delete Lpred;
463    
464     delete ZOSSFP;
465     delete ZOSOFP;
466     delete ZOSSFN;
467     delete ZOSOFN;
468    
469     delete SBOSSFP;
470     delete SBOSOFP;
471     delete SBOSSFN;
472     delete SBOSOFN;
473    
474     delete LZOSSFP;
475     delete LZOSOFP;
476     delete LZOSSFN;
477     delete LZOSOFN;
478    
479     delete LSBOSSFP;
480     delete LSBOSOFP;
481     delete LSBOSSFN;
482     delete LSBOSOFN;
483    
484     }
485    
486     void prepare_datacard(TFile *f) {
487     TH1F *dataob = (TH1F*)f->Get("data_obs");
488     TH1F *signal = (TH1F*)f->Get("signal");
489     TH1F *background = (TH1F*)f->Get("background");
490    
491     ofstream datacard;
492     ensure_directory_exists(get_directory()+"/limits");
493 buchmann 1.6 datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
494 buchmann 1.5 datacard << "Writing this to a file.\n";
495     datacard << "imax 1\n";
496     datacard << "jmax 1\n";
497     datacard << "kmax *\n";
498     datacard << "---------------\n";
499     datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
500     datacard << "---------------\n";
501     datacard << "bin 1\n";
502     datacard << "observation "<<dataob->Integral()<<"\n";
503     datacard << "------------------------------\n";
504     datacard << "bin 1 1\n";
505     datacard << "process signal background\n";
506     datacard << "process 0 1\n";
507     datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
508     datacard << "--------------------------------\n";
509     datacard << "lumi lnN 1.10 1.0\n";
510     datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
511     datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
512     datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
513     datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
514     datacard.close();
515     }
516    
517    
518     void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
519     ensure_directory_exists(get_directory()+"/limits");
520     TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
521     TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
522     limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
523     limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
524     limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
525     limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
526     limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
527    
528     prepare_datacard(limfile);
529 buchmann 1.6 limfile->Close();
530 buchmann 1.5 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
531    
532 fronga 1.9 }