ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.28
Committed: Mon Nov 7 15:24:59 2011 UTC (13 years, 6 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.27: +8 -6 lines
Log Message:
Updated limit calculation for flipped analysis

File Contents

# User Rev Content
1 buchmann 1.26 /****
2    
3     Off peak status (RestrictToMassPeak) :
4    
5     x Necessary adaptations identified
6     x Started working on necessary adaptations
7     x Necessary adaptations implemented
8     x Necessary adaptations tested
9    
10     DONE!
11    
12    
13     ****/
14 buchmann 1.1 #include <iostream>
15     #include <vector>
16     #include <sys/stat.h>
17 buchmann 1.6 #include <fstream>
18 buchmann 1.1
19     #include <TCut.h>
20     #include <TROOT.h>
21     #include <TCanvas.h>
22     #include <TMath.h>
23     #include <TColor.h>
24     #include <TPaveText.h>
25     #include <TRandom.h>
26     #include <TH1.h>
27     #include <TH2.h>
28     #include <TF1.h>
29     #include <TSQLResult.h>
30     #include <TProfile.h>
31 buchmann 1.20 #include <TSystem.h>
32     #include "LimitDroplet.C"
33 buchmann 1.1
34     //#include "TTbar_stuff.C"
35     using namespace std;
36    
37     using namespace PlottingSetup;
38    
39    
40     void rediscover_the_top(string mcjzb, string datajzb) {
41 buchmann 1.3 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
42 buchmann 1.1 TCanvas *c3 = new TCanvas("c3","c3");
43     c3->SetLogy(1);
44     vector<float> binning;
45     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
46     /*
47     binning.push_back(50);
48     binning.push_back(100);
49     binning.push_back(150);
50     binning.push_back(200);
51     binning.push_back(500);
52    
53    
54     TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
55     TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
56     // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
57     TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
58     /*
59     ofstream myfile;
60     TH1F *ratio = (TH1F*)observed->Clone();
61     ratio->Divide(dataprediction);
62     ratio->GetYaxis()->SetTitle("Ratio obs/pred");
63     ratio->Draw();
64     c3->SaveAs("testratio.png");
65     myfile.open ("ShapeFit_log.txt");
66     establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
67     myfile.close();
68     */
69    
70    
71     int nbins=100;
72     float low=0;
73     float hi=500;
74     TCanvas *c4 = new TCanvas("c4","c4",900,900);
75     c4->Divide(2,2);
76     c4->cd(1);
77     c4->cd(1)->SetLogy(1);
78     TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
79     TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
80     datapredictiont->Add(datapredictiono,-1);
81 buchmann 1.3 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
82 buchmann 1.1 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
83     datapredictiont->SetMarkerColor(kRed);
84     datapredictiont->SetLineColor(kRed);
85     datapredictiont->Draw();
86     functions[1]->Draw("same");
87     TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
88     title1->Draw();
89    
90     c4->cd(2);
91     c4->cd(2)->SetLogy(1);
92     TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
93     observedt->Draw();
94     datapredictiont->Draw("histo,same");
95     functions[1]->Draw("same");
96     TText *title2 = write_title("Observed and predicted background");
97     title2->Draw();
98    
99     c4->cd(3);
100     c4->cd(3)->SetLogy(1);
101     // TH1F *ratio = (TH1F*)observedt->Clone();
102    
103     TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
104     for(int i=0;i<=nbins;i++) {
105     analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
106     analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
107     }
108     analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
109     analytical_background_prediction->GetYaxis()->CenterTitle();
110     TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
111     analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
112     analytical_background_prediction->SetMarkerSize(0);
113     analytical_background_prediction->Draw("e5");
114     analyticaldrawonly->Draw("histo,same");
115     functions[1]->Draw("same");
116     TText *title3 = write_title("Analytical bg pred histo");
117     title3->Draw();
118    
119     c4->cd(4);
120     // c4->cd(4)->SetLogy(1);
121     vector<float> ratio_binning;
122     ratio_binning.push_back(0);
123     ratio_binning.push_back(5);
124     ratio_binning.push_back(10);
125     ratio_binning.push_back(20);
126     ratio_binning.push_back(50);
127     // ratio_binning.push_back(60);
128     /*
129     ratio_binning.push_back(51);
130     ratio_binning.push_back(52);
131     ratio_binning.push_back(53);
132     ratio_binning.push_back(54);
133     ratio_binning.push_back(55);
134     ratio_binning.push_back(56);
135     ratio_binning.push_back(57);
136     ratio_binning.push_back(58);
137     ratio_binning.push_back(59);
138     ratio_binning.push_back(60);
139     // ratio_binning.push_back(70);*/
140     // ratio_binning.push_back(80);
141     // ratio_binning.push_back(90);
142     ratio_binning.push_back(80);
143     // ratio_binning.push_back(110);
144     ratio_binning.push_back(500);
145    
146     TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
147     TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
148     TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
149     datapredictiontb->Add(datapredictiontbo,-1);
150     TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
151     for(int i=0;i<=ratio_binning.size();i++) {
152     analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
153     analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
154     }
155    
156     TH1F *ratio = (TH1F*) observedtb->Clone();
157     ratio->Divide(datapredictiontb);
158    
159     for (int i=0;i<=ratio_binning.size();i++) {
160 buchmann 1.3 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
161 buchmann 1.1 }
162    
163     // ratio->Divide(datapredictiontb);
164     // ratio->Divide(analytical_background_predictionb);
165     // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
166     // ratio->Divide(analytical_background_prediction);
167     // ratio->Divide(datapredictiont);
168     // ratio->GetYaxis()->SetTitle("obs/pred");
169     // JZBratio->Draw("AP");
170     ratio->GetYaxis()->SetRangeUser(0,10);
171     ratio->Draw();
172     //analytical_background_predictionb->Draw();
173     // JZBratio->SetTitle("");
174     TText *title4 = write_title("Ratio of observed to predicted");
175     title4->Draw();
176    
177     // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
178     CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
179    
180    
181    
182    
183    
184     }
185    
186 buchmann 1.28 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doexpected, int flipped) {
187 buchmann 1.11 float sigma95=-9.9,sigma95A=-9.9;
188 buchmann 1.15 /*
189     USAGE OF ROOSTATS_CL95
190     " Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n"
191     " LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n"
192     " Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n"
193     " \n"
194     "
195     " Double_t obs_limit = limit.GetObservedLimit(); \n"
196     " Double_t exp_limit = limit.GetExpectedLimit(); \n"
197     " Double_t exp_up = limit.GetOneSigmaHighRange(); \n"
198     " Double_t exp_down = limit.GetOneSigmaLowRange(); \n"
199     " Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n"
200     " Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n"
201     */
202 buchmann 1.12 if(mceff<=0) {
203 buchmann 1.11 write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
204     dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
205     vector<float> sigmas;
206     sigmas.push_back(-1);
207     sigmas.push_back(-1);
208     return sigmas;
209     } else {
210 buchmann 1.15 int nlimittoysused=1;
211 buchmann 1.20
212     ///------------------------------------------ < NEW > ----------------------------------------------------------
213    
214     int secondssince1970=time(NULL);
215     stringstream repname;
216     repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt";
217    
218     /* - report filename [1]
219     - luminosity [2]
220     - lumi uncert [3]
221     - MC efficiency [4]
222     - MC efficiency error [5]
223     - Npred [6]
224     - Nprederr [7]
225     - Nobs [8]
226     - JZB cut [9]
227     - plot name [10]*/
228    
229 buchmann 1.28 if(flipped==0) dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
230     if(flipped>0) dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << flippedNpred[ibin] << "," << flippedNprederr[ibin] << "," << flippedNobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
231 buchmann 1.20
232 buchmann 1.24 stringstream command;
233 buchmann 1.28 if(flipped==0) command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/TimedLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected;
234     if(flipped>0) command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/TimedLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << flippedNpred[ibin] << " " << flippedNprederr[ibin] << " " << flippedNobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected;
235 buchmann 1.21 dout << command.str() << endl;
236 buchmann 1.20
237     int retval = 256;
238     int attempts=0;
239 buchmann 1.26 while(!(retval==0||attempts>=3)) {//try up to 3 times
240 buchmann 1.20 attempts++;
241 buchmann 1.28 dout << "Starting limit calculation (TimedLimitCapsule) now : Attempt " << attempts << endl;
242 buchmann 1.20 retval=gSystem->Exec(command.str().c_str());
243     }
244    
245     LimitDroplet limres;
246     limres.readDroplet(repname.str());
247 buchmann 1.21 dout << limres << endl;
248 buchmann 1.20 remove(repname.str().c_str());
249 buchmann 1.22 sigma95=limres.observed;
250 buchmann 1.20
251    
252     ///------------------------------------------ < /NEW > ----------------------------------------------------------
253 buchmann 1.2 vector<float> sigmas;
254 buchmann 1.25 sigmas.push_back(sigma95);
255 buchmann 1.22 if(doexpected) {
256 buchmann 1.25 sigmas.push_back(limres.expected);
257     sigmas.push_back(limres.upper68);
258     sigmas.push_back(limres.lower68);
259     sigmas.push_back(limres.upper95);
260     sigmas.push_back(limres.lower95);
261 buchmann 1.18 }
262 buchmann 1.25
263 buchmann 1.2 return sigmas;
264 buchmann 1.15
265    
266 buchmann 1.25 }//end of mc efficiency is ok
267 buchmann 1.2 }
268    
269 buchmann 1.28 void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doexpected, int flipped) {
270 buchmann 1.3 dout << "Doing counting experiment ... " << endl;
271 buchmann 1.2 vector<vector<string> > limits;
272     vector<vector<float> > vlimits;
273    
274 buchmann 1.1
275     for(int isample=0;isample<signalsamples.collection.size();isample++) {
276 buchmann 1.2 vector<string> rows;
277     vector<float> vrows;
278 buchmann 1.3 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
279 buchmann 1.2 rows.push_back(signalsamples.collection[isample].samplename);
280 buchmann 1.1 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
281 buchmann 1.3 dout << "_________________________________________________________________________________" << endl;
282 buchmann 1.2 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
283     float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
284     float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
285     float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
286     float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
287 fronga 1.9 float observed,observederr,null,result;
288 buchmann 1.11
289     // fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
290     // observed-=result;//this is the actual excess we see!
291     // float expected=observed/luminosity;
292 buchmann 1.17 string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png"));
293 buchmann 1.3 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
294 buchmann 1.28 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doexpected,flipped);
295 buchmann 1.2
296 buchmann 1.22 if(doexpected) {
297 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
298     rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
299 buchmann 1.2 vrows.push_back(sigmas[0]);
300     vrows.push_back(sigmas[1]);
301 buchmann 1.11 // vrows.push_back(expected);
302     vrows.push_back(signalsamples.collection[isample].xs);
303 buchmann 1.2 }
304     else {
305 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
306     rows.push_back(any2string(sigmas[0]));
307 buchmann 1.2 vrows.push_back(sigmas[0]);
308 buchmann 1.11 vrows.push_back(signalsamples.collection[isample].xs);
309     // vrows.push_back(expected);
310 buchmann 1.2 }
311 buchmann 1.1 }//end of bin loop
312 buchmann 1.2 limits.push_back(rows);
313     vlimits.push_back(vrows);
314 buchmann 1.1 }//end of sample loop
315 buchmann 1.12 dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
316 buchmann 1.11 dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl;
317 buchmann 1.3 dout << "\t";
318 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
319 buchmann 1.3 dout << jzbcuts[irow] << "\t";
320 buchmann 1.2 }
321 buchmann 1.3 dout << endl;
322 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
323     for(int ientry=0;ientry<limits[irow].size();ientry++) {
324 buchmann 1.12 if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
325     else dout << " (N/A) \t";
326 buchmann 1.2 }
327 buchmann 1.3 dout << endl;
328 buchmann 1.2 }
329    
330 buchmann 1.22 if(!doexpected) {
331 buchmann 1.12 dout << endl << endl << "LIMITS: (Tex)" << endl;
332 buchmann 1.13 tout << "\\begin{table}[hbtp]" << endl;
333 buchmann 1.21 tout << "\\renewcommand{\\arraystretch}{1.3}" << endl;
334 buchmann 1.13 tout << "\\begin{center}" << endl;
335 buchmann 1.14 tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl;
336 buchmann 1.13 tout << "" << endl;
337 buchmann 1.12 tout << "\\begin{tabular}{ | l | ";
338     for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
339     tout << "} " << endl << " \\hline " << endl << "& \t ";
340 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
341 buchmann 1.12 tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
342 buchmann 1.2 }
343 buchmann 1.12 tout << " \\\\ \\hline " << endl;
344 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
345 buchmann 1.12 tout << limits[irow][0] << " \t";
346 buchmann 1.2 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
347 buchmann 1.12 if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
348     else tout << " & ( N / A ) \t";
349 buchmann 1.11 // dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
350 buchmann 1.2 }
351 buchmann 1.12 tout << " \\\\ \\hline " << endl;
352 buchmann 1.2 }
353 buchmann 1.12 tout << "\\end{tabular}" << endl;
354 buchmann 1.13 tout << " \\end{tabular}"<< endl;
355     tout << "\\end{center}"<< endl;
356     tout << "\\end{table} "<< endl;
357    
358 buchmann 1.2 }//do observed
359 buchmann 1.3
360     dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
361 buchmann 1.11 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
362 buchmann 1.3 for(int icut=0;icut<jzbcuts.size();icut++) {
363 buchmann 1.14 dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl;
364 buchmann 1.3 for(int isample=0;isample<signalsamples.collection.size();isample++) {
365 buchmann 1.11 dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
366 buchmann 1.3 }
367     dout << endl;
368     }
369 buchmann 1.1 }
370    
371    
372    
373 buchmann 1.7 /********************************************************************** new : Limits using SHAPES ***********************************
374    
375    
376     SSSSSSSSSSSSSSS hhhhhhh
377     SS:::::::::::::::Sh:::::h
378     S:::::SSSSSS::::::Sh:::::h
379     S:::::S SSSSSSSh:::::h
380     S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss
381     S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s
382     S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s
383     SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s
384     SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss
385     SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s
386     S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s
387     S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s
388     SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s
389     S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s
390     S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss
391     SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss
392     p:::::p
393     p:::::p
394     p:::::::p
395     p:::::::p
396     p:::::::p
397     ppppppppp
398    
399    
400     *********************************************************************** new : Limits using SHAPES ***********************************/
401    
402 buchmann 1.5
403     void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
404     dout << "Creatig shape templates ... ";
405     if(identifier!="") dout << "for systematic called "<<identifier;
406     dout << endl;
407     int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
408 buchmann 1.6 if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
409 buchmann 1.5
410     TCut limitnJetcut;
411     if(JES==noJES) limitnJetcut=cutnJets;
412     else {
413     if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
414     if(JES==JESup) limitnJetcut=cutnJetsJESup;
415     }
416     TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
417     TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
418     TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
419     TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
420    
421 buchmann 1.26 TH1F *SBOSSFP;
422     TH1F *SBOSOFP;
423     TH1F *SBOSSFN;
424     TH1F *SBOSOFN;
425 buchmann 1.5
426     TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
427     TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
428     TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
429     TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
430    
431 buchmann 1.26 TH1F *LSBOSSFP;
432     TH1F *LSBOSOFP;
433     TH1F *LSBOSSFN;
434     TH1F *LSBOSOFN;
435    
436     flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
437     if(PlottingSetup::RestrictToMassPeak) {
438     SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
439     SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
440     SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
441     SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
442    
443     LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
444     LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
445     LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
446     LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
447     }
448 buchmann 1.5
449     string obsname="data_obs";
450     string predname="background";
451     string signalname="signal";
452     if(identifier!="") {
453     obsname=("data_"+identifier);
454     predname=("background_"+identifier);
455     signalname="signal_"+identifier;
456     }
457    
458 buchmann 1.26 TH1F *obs = (TH1F*)ZOSSFP->Clone("observation");
459 buchmann 1.5 obs->SetName(obsname.c_str());
460     obs->Write();
461 buchmann 1.26 TH1F *pred = (TH1F*)ZOSSFN->Clone("prediction");
462     flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
463     if(PlottingSetup::RestrictToMassPeak) {
464     pred->Add(ZOSOFP,1.0/3);
465     pred->Add(ZOSOFN,-1.0/3);
466     pred->Add(SBOSSFP,1.0/3);
467     pred->Add(SBOSSFN,-1.0/3);
468     pred->Add(SBOSOFP,1.0/3);
469     pred->Add(SBOSOFN,-1.0/3);
470     } else {
471     pred->Add(ZOSOFP,1.0);
472     pred->Add(ZOSOFN,-1.0);
473     }
474    
475 buchmann 1.5 pred->SetName(predname.c_str());
476     pred->Write();
477    
478     // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
479     // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
480    
481     TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
482     TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
483     Lobs->Add(LZOSSFP);
484     Lpred->Add(LZOSSFN);
485 buchmann 1.26 flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
486     if(PlottingSetup::RestrictToMassPeak) {
487     Lpred->Add(LZOSOFP,1.0/3);
488     Lpred->Add(LZOSOFN,-1.0/3);
489     Lpred->Add(LSBOSSFP,1.0/3);
490     Lpred->Add(LSBOSSFN,-1.0/3);
491     Lpred->Add(LSBOSOFP,1.0/3);
492     Lpred->Add(LSBOSOFN,-1.0/3);
493     } else {
494     Lpred->Add(LZOSOFP,1.0);
495     Lpred->Add(LZOSOFN,-1.0);
496     }
497    
498 buchmann 1.5 TH1F *signal = (TH1F*)Lobs->Clone();
499     signal->Add(Lpred,-1);
500     signal->SetName(signalname.c_str());
501     signal->Write();
502    
503     delete Lobs;
504     delete Lpred;
505    
506     delete ZOSSFP;
507     delete ZOSOFP;
508     delete ZOSSFN;
509     delete ZOSOFN;
510    
511 buchmann 1.26 if(PlottingSetup::RestrictToMassPeak) {
512     delete SBOSSFP;
513     delete SBOSOFP;
514     delete SBOSSFN;
515     delete SBOSOFN;
516     }
517 buchmann 1.5
518     delete LZOSSFP;
519     delete LZOSOFP;
520     delete LZOSSFN;
521     delete LZOSOFN;
522    
523 buchmann 1.26 if(PlottingSetup::RestrictToMassPeak) {
524     delete LSBOSSFP;
525     delete LSBOSOFP;
526     delete LSBOSSFN;
527     delete LSBOSOFN;
528     }
529 buchmann 1.5
530     }
531    
532     void prepare_datacard(TFile *f) {
533     TH1F *dataob = (TH1F*)f->Get("data_obs");
534     TH1F *signal = (TH1F*)f->Get("signal");
535     TH1F *background = (TH1F*)f->Get("background");
536    
537     ofstream datacard;
538     ensure_directory_exists(get_directory()+"/limits");
539 buchmann 1.6 datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
540 buchmann 1.5 datacard << "Writing this to a file.\n";
541     datacard << "imax 1\n";
542     datacard << "jmax 1\n";
543     datacard << "kmax *\n";
544     datacard << "---------------\n";
545     datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
546     datacard << "---------------\n";
547     datacard << "bin 1\n";
548     datacard << "observation "<<dataob->Integral()<<"\n";
549     datacard << "------------------------------\n";
550     datacard << "bin 1 1\n";
551     datacard << "process signal background\n";
552     datacard << "process 0 1\n";
553     datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
554     datacard << "--------------------------------\n";
555     datacard << "lumi lnN 1.10 1.0\n";
556     datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
557     datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
558     datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
559     datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
560     datacard.close();
561     }
562    
563    
564     void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
565     ensure_directory_exists(get_directory()+"/limits");
566     TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
567     TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
568     limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
569     limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
570     limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
571     limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
572     limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
573    
574     prepare_datacard(limfile);
575 buchmann 1.6 limfile->Close();
576 buchmann 1.5 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
577    
578 fronga 1.9 }