1 |
|
#include <iostream> |
2 |
|
#include <vector> |
3 |
|
#include <sys/stat.h> |
4 |
+ |
#include <fstream> |
5 |
|
|
6 |
|
#include <TCut.h> |
7 |
|
#include <TROOT.h> |
15 |
|
#include <TF1.h> |
16 |
|
#include <TSQLResult.h> |
17 |
|
#include <TProfile.h> |
18 |
+ |
#include <TSystem.h> |
19 |
+ |
#include "LimitDroplet.C" |
20 |
|
|
21 |
|
//#include "TTbar_stuff.C" |
22 |
|
using namespace std; |
25 |
|
|
26 |
|
|
27 |
|
void rediscover_the_top(string mcjzb, string datajzb) { |
28 |
< |
cout << "Hi! today we are going to (try to) rediscover the top!" << endl; |
28 |
> |
dout << "Hi! today we are going to (try to) rediscover the top!" << endl; |
29 |
|
TCanvas *c3 = new TCanvas("c3","c3"); |
30 |
|
c3->SetLogy(1); |
31 |
|
vector<float> binning; |
65 |
|
TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity); |
66 |
|
TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity); |
67 |
|
datapredictiont->Add(datapredictiono,-1); |
68 |
< |
cout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl; |
68 |
> |
dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl; |
69 |
|
vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10); |
70 |
|
datapredictiont->SetMarkerColor(kRed); |
71 |
|
datapredictiont->SetLineColor(kRed); |
144 |
|
ratio->Divide(datapredictiontb); |
145 |
|
|
146 |
|
for (int i=0;i<=ratio_binning.size();i++) { |
147 |
< |
cout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl; |
147 |
> |
dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl; |
148 |
|
} |
149 |
|
|
150 |
|
// ratio->Divide(datapredictiontb); |
170 |
|
|
171 |
|
} |
172 |
|
|
173 |
< |
void calculate_upper_limits(string mcjzb, string datajzb) { |
174 |
< |
write_warning("calculate_upper_limits","Upper limit calculation temporarily deactivated"); |
175 |
< |
// write_warning("calculate_upper_limits","Calculation of SUSY upper limits has been temporarily suspended in favor of top discovery"); |
176 |
< |
// rediscover_the_top(mcjzb,datajzb); |
177 |
< |
/* |
178 |
< |
TCanvas *c3 = new TCanvas("c3","c3"); |
179 |
< |
c3->SetLogy(1); |
180 |
< |
vector<float> binning; |
181 |
< |
//binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800); |
182 |
< |
binning.push_back(50); |
183 |
< |
binning.push_back(100); |
184 |
< |
binning.push_back(150); |
185 |
< |
binning.push_back(200); |
186 |
< |
binning.push_back(500); |
187 |
< |
TH1F *datapredictiona = allsamples.Draw("datapredictiona", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity); |
188 |
< |
TH1F *datapredictionb = allsamples.Draw("datapredictionb", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity); |
189 |
< |
TH1F *datapredictionc = allsamples.Draw("datapredictionc", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity); |
190 |
< |
TH1F *dataprediction = (TH1F*)datapredictiona->Clone(); |
191 |
< |
dataprediction->Add(datapredictionb,-1); |
192 |
< |
dataprediction->Add(datapredictionc); |
193 |
< |
TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
194 |
< |
TH1F *signalpred = allsamples.Draw("signalpred", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
195 |
< |
TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
196 |
< |
TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
197 |
< |
TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity); |
198 |
< |
signalpred->Add(signalpredlo,-1); |
199 |
< |
signalpred->Add(signalpredro); |
200 |
< |
puresignal->Add(signalpred,-1);//subtracting signal contamination |
201 |
< |
ofstream myfile; |
202 |
< |
myfile.open ("ShapeFit_log.txt"); |
203 |
< |
establish_upper_limits(puredata,dataprediction,puresignal,"LM4",myfile); |
204 |
< |
myfile.close(); |
205 |
< |
*/ |
206 |
< |
} |
173 |
> |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doexpected) { |
174 |
> |
float sigma95=-9.9,sigma95A=-9.9; |
175 |
> |
/* |
176 |
> |
USAGE OF ROOSTATS_CL95 |
177 |
> |
" Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n" |
178 |
> |
" LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n" |
179 |
> |
" Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n" |
180 |
> |
" \n" |
181 |
> |
" |
182 |
> |
" Double_t obs_limit = limit.GetObservedLimit(); \n" |
183 |
> |
" Double_t exp_limit = limit.GetExpectedLimit(); \n" |
184 |
> |
" Double_t exp_up = limit.GetOneSigmaHighRange(); \n" |
185 |
> |
" Double_t exp_down = limit.GetOneSigmaLowRange(); \n" |
186 |
> |
" Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n" |
187 |
> |
" Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n" |
188 |
> |
*/ |
189 |
> |
if(mceff<=0) { |
190 |
> |
write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:"); |
191 |
> |
dout << "mc efficiency=" << mceff << " +/- " << mcefferr; |
192 |
> |
vector<float> sigmas; |
193 |
> |
sigmas.push_back(-1); |
194 |
> |
sigmas.push_back(-1); |
195 |
> |
return sigmas; |
196 |
> |
} else { |
197 |
> |
int nlimittoysused=1; |
198 |
> |
|
199 |
> |
///------------------------------------------ < NEW > ---------------------------------------------------------- |
200 |
> |
|
201 |
> |
int secondssince1970=time(NULL); |
202 |
> |
stringstream repname; |
203 |
> |
repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt"; |
204 |
> |
|
205 |
> |
/* - report filename [1] |
206 |
> |
- luminosity [2] |
207 |
> |
- lumi uncert [3] |
208 |
> |
- MC efficiency [4] |
209 |
> |
- MC efficiency error [5] |
210 |
> |
- Npred [6] |
211 |
> |
- Nprederr [7] |
212 |
> |
- Nobs [8] |
213 |
> |
- JZB cut [9] |
214 |
> |
- plot name [10]*/ |
215 |
> |
|
216 |
> |
dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
217 |
> |
|
218 |
> |
stringstream command; |
219 |
> |
command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/NewLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected; |
220 |
> |
dout << command.str() << endl; |
221 |
> |
|
222 |
> |
int retval = 256; |
223 |
> |
int attempts=0; |
224 |
> |
while(!(retval==0||attempts>=5)) {//try up to 5 times |
225 |
> |
attempts++; |
226 |
> |
dout << "Starting limit calculation (LimitCapsule) now : Attempt " << attempts << endl; |
227 |
> |
retval=gSystem->Exec(command.str().c_str()); |
228 |
> |
} |
229 |
> |
|
230 |
> |
LimitDroplet limres; |
231 |
> |
limres.readDroplet(repname.str()); |
232 |
> |
dout << limres << endl; |
233 |
> |
remove(repname.str().c_str()); |
234 |
> |
sigma95=limres.observed; |
235 |
|
|
236 |
< |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) { |
237 |
< |
float sigma95=0.0,sigma95A=0.0; |
207 |
< |
cout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << 1<< ") " << endl; |
208 |
< |
sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, 1); |
209 |
< |
if(doobserved) { |
210 |
< |
cout << "Now calling : CL95A(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << 1<< ") " << endl; |
211 |
< |
sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], 1); |
212 |
< |
} |
236 |
> |
|
237 |
> |
///------------------------------------------ < /NEW > ---------------------------------------------------------- |
238 |
|
vector<float> sigmas; |
239 |
|
sigmas.push_back(sigma95); |
240 |
< |
sigmas.push_back(sigma95A); |
240 |
> |
if(doexpected) { |
241 |
> |
sigmas.push_back(limres.expected); |
242 |
> |
sigmas.push_back(limres.upper68); |
243 |
> |
sigmas.push_back(limres.lower68); |
244 |
> |
sigmas.push_back(limres.upper95); |
245 |
> |
sigmas.push_back(limres.lower95); |
246 |
> |
} |
247 |
> |
|
248 |
|
return sigmas; |
249 |
+ |
|
250 |
+ |
|
251 |
+ |
}//end of mc efficiency is ok |
252 |
|
} |
253 |
|
|
254 |
< |
void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) { |
255 |
< |
cout << "Doing counting experiment ... " << endl; |
254 |
> |
void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doexpected) { |
255 |
> |
dout << "Doing counting experiment ... " << endl; |
256 |
|
vector<vector<string> > limits; |
257 |
|
vector<vector<float> > vlimits; |
258 |
|
|
260 |
|
for(int isample=0;isample<signalsamples.collection.size();isample++) { |
261 |
|
vector<string> rows; |
262 |
|
vector<float> vrows; |
263 |
< |
cout << "Considering sample " << signalsamples.collection[isample].samplename << endl; |
263 |
> |
dout << "Considering sample " << signalsamples.collection[isample].samplename << endl; |
264 |
|
rows.push_back(signalsamples.collection[isample].samplename); |
265 |
|
for(int ibin=0;ibin<jzbcuts.size();ibin++) { |
266 |
< |
cout << "_________________________________________________________________________________" << endl; |
266 |
> |
dout << "_________________________________________________________________________________" << endl; |
267 |
|
float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0]; |
268 |
|
float mceff=uncertainties[isample*jzbcuts.size()+ibin][1]; |
269 |
|
float staterr=uncertainties[isample*jzbcuts.size()+ibin][2]; |
270 |
|
float systerr=uncertainties[isample*jzbcuts.size()+ibin][3]; |
271 |
|
float toterr =uncertainties[isample*jzbcuts.size()+ibin][4]; |
272 |
< |
float observed,null,result; |
238 |
< |
fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples); |
239 |
< |
observed-=result;//this is the actual excess we see! |
240 |
< |
float expected=observed/luminosity; |
272 |
> |
float observed,observederr,null,result; |
273 |
|
|
274 |
< |
cout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl; |
275 |
< |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved); |
274 |
> |
// fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples); |
275 |
> |
// observed-=result;//this is the actual excess we see! |
276 |
> |
// float expected=observed/luminosity; |
277 |
> |
string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png")); |
278 |
> |
dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl; |
279 |
> |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doexpected); |
280 |
|
|
281 |
< |
if(doobserved) { |
282 |
< |
rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")"); |
281 |
> |
if(doexpected) { |
282 |
> |
// rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")"); |
283 |
> |
rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")"); |
284 |
|
vrows.push_back(sigmas[0]); |
285 |
|
vrows.push_back(sigmas[1]); |
286 |
< |
vrows.push_back(expected); |
286 |
> |
// vrows.push_back(expected); |
287 |
> |
vrows.push_back(signalsamples.collection[isample].xs); |
288 |
|
} |
289 |
|
else { |
290 |
< |
rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")"); |
290 |
> |
// rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")"); |
291 |
> |
rows.push_back(any2string(sigmas[0])); |
292 |
|
vrows.push_back(sigmas[0]); |
293 |
< |
vrows.push_back(expected); |
293 |
> |
vrows.push_back(signalsamples.collection[isample].xs); |
294 |
> |
// vrows.push_back(expected); |
295 |
|
} |
296 |
|
}//end of bin loop |
297 |
|
limits.push_back(rows); |
298 |
|
vlimits.push_back(vrows); |
299 |
|
}//end of sample loop |
300 |
< |
cout << endl << endl << "PAS table 3: " << endl << endl; |
301 |
< |
cout << "\t"; |
300 |
> |
dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl; |
301 |
> |
dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl; |
302 |
> |
dout << "\t"; |
303 |
|
for (int irow=0;irow<jzbcuts.size();irow++) { |
304 |
< |
cout << jzbcuts[irow] << "\t"; |
304 |
> |
dout << jzbcuts[irow] << "\t"; |
305 |
|
} |
306 |
< |
cout << endl; |
306 |
> |
dout << endl; |
307 |
|
for(int irow=0;irow<limits.size();irow++) { |
308 |
|
for(int ientry=0;ientry<limits[irow].size();ientry++) { |
309 |
< |
cout << limits[irow][ientry] << "\t"; |
309 |
> |
if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t"; |
310 |
> |
else dout << " (N/A) \t"; |
311 |
|
} |
312 |
< |
cout << endl; |
312 |
> |
dout << endl; |
313 |
|
} |
314 |
|
|
315 |
< |
if(!doobserved) { |
316 |
< |
cout << endl << endl << "LIMITS: " << endl; |
317 |
< |
cout << "\t"; |
315 |
> |
if(!doexpected) { |
316 |
> |
dout << endl << endl << "LIMITS: (Tex)" << endl; |
317 |
> |
tout << "\\begin{table}[hbtp]" << endl; |
318 |
> |
tout << "\\renewcommand{\\arraystretch}{1.3}" << endl; |
319 |
> |
tout << "\\begin{center}" << endl; |
320 |
> |
tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl; |
321 |
> |
tout << "" << endl; |
322 |
> |
tout << "\\begin{tabular}{ | l | "; |
323 |
> |
for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |"; |
324 |
> |
tout << "} " << endl << " \\hline " << endl << "& \t "; |
325 |
|
for (int irow=0;irow<jzbcuts.size();irow++) { |
326 |
< |
cout << jzbcuts[irow] << "\t"; |
326 |
> |
tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t "; |
327 |
|
} |
328 |
< |
cout << endl; |
328 |
> |
tout << " \\\\ \\hline " << endl; |
329 |
|
for(int irow=0;irow<limits.size();irow++) { |
330 |
< |
cout << limits[irow][0] << "\t"; |
330 |
> |
tout << limits[irow][0] << " \t"; |
331 |
|
for(int ientry=0;ientry<jzbcuts.size();ientry++) { |
332 |
< |
cout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t"; |
332 |
> |
if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t"; |
333 |
> |
else tout << " & ( N / A ) \t"; |
334 |
> |
// dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t"; |
335 |
|
} |
336 |
< |
cout << endl; |
336 |
> |
tout << " \\\\ \\hline " << endl; |
337 |
|
} |
338 |
+ |
tout << "\\end{tabular}" << endl; |
339 |
+ |
tout << " \\end{tabular}"<< endl; |
340 |
+ |
tout << "\\end{center}"<< endl; |
341 |
+ |
tout << "\\end{table} "<< endl; |
342 |
+ |
|
343 |
|
}//do observed |
344 |
+ |
|
345 |
+ |
dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl; |
346 |
+ |
dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl; |
347 |
+ |
for(int icut=0;icut<jzbcuts.size();icut++) { |
348 |
+ |
dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl; |
349 |
+ |
for(int isample=0;isample<signalsamples.collection.size();isample++) { |
350 |
+ |
dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl; |
351 |
+ |
} |
352 |
+ |
dout << endl; |
353 |
+ |
} |
354 |
|
} |
355 |
|
|
290 |
– |
void susy_scan_axis_labeling(TH2F *histo) { |
291 |
– |
histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP"); |
292 |
– |
histo->GetXaxis()->CenterTitle(); |
293 |
– |
histo->GetYaxis()->SetTitle("m_{#tilde{q}}"); |
294 |
– |
histo->GetYaxis()->CenterTitle(); |
295 |
– |
} |
356 |
|
|
357 |
< |
void scan_susy_space(string mcjzb, string datajzb) { |
358 |
< |
TCanvas *c3 = new TCanvas("c3","c3"); |
359 |
< |
vector<float> binning; |
360 |
< |
binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800); |
361 |
< |
float arrbinning[binning.size()]; |
362 |
< |
for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i]; |
363 |
< |
TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity); |
364 |
< |
puredata->SetMarkerSize(DataMarkerSize); |
365 |
< |
TH1F *allbgs = allsamples.Draw("allbgs", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity); |
366 |
< |
TH1F *allbgsb = allsamples.Draw("allbgsb", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity); |
367 |
< |
TH1F *allbgsc = allsamples.Draw("allbgsc", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity); |
368 |
< |
allbgs->Add(allbgsb,-1); |
369 |
< |
allbgs->Add(allbgsc); |
370 |
< |
int ndata=puredata->Integral(); |
371 |
< |
ofstream myfile; |
372 |
< |
myfile.open ("susyscan_log.txt"); |
373 |
< |
TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root"); |
374 |
< |
TTree *suevents = (TTree*)susyscanfile->Get("events"); |
375 |
< |
TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000); |
376 |
< |
TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000); |
377 |
< |
TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000); |
378 |
< |
TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000); |
379 |
< |
|
380 |
< |
susy_scan_axis_labeling(exclusionmap); |
381 |
< |
susy_scan_axis_labeling(exclusionmap1s); |
382 |
< |
susy_scan_axis_labeling(exclusionmap2s); |
383 |
< |
susy_scan_axis_labeling(exclusionmap3s); |
384 |
< |
|
385 |
< |
Int_t MyPalette[100]; |
386 |
< |
Double_t r[] = {0., 0.0, 1.0, 1.0, 1.0}; |
387 |
< |
Double_t g[] = {0., 0.0, 0.0, 1.0, 1.0}; |
388 |
< |
Double_t b[] = {0., 1.0, 0.0, 0.0, 1.0}; |
389 |
< |
Double_t stop[] = {0., .25, .50, .75, 1.0}; |
390 |
< |
Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100); |
391 |
< |
for (int i=0;i<100;i++) MyPalette[i] = FI+i; |
392 |
< |
|
393 |
< |
gStyle->SetPalette(100, MyPalette); |
394 |
< |
|
395 |
< |
for(int m23=50;m23<500;m23+=25) { |
396 |
< |
for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50) |
397 |
< |
{ |
398 |
< |
c3->cd(); |
399 |
< |
stringstream drawcondition; |
400 |
< |
drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2"; |
401 |
< |
TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning); |
402 |
< |
TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning); |
403 |
< |
stringstream drawvar,drawvar2; |
404 |
< |
drawvar<<mcjzb<<">>puresignal"; |
405 |
< |
drawvar2<<"-"<<mcjzb<<">>puresignall"; |
406 |
< |
suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str()); |
407 |
< |
suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str()); |
408 |
< |
if(puresignal->Integral()<60) { |
409 |
< |
delete puresignal; |
410 |
< |
continue; |
411 |
< |
} |
412 |
< |
puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !! |
413 |
< |
puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data |
414 |
< |
stringstream saveas; |
415 |
< |
saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23; |
416 |
< |
cout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl; |
417 |
< |
// TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
418 |
< |
// TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
419 |
< |
// TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity); |
420 |
< |
// signalpred->Add(signalpredlo,-1); |
421 |
< |
// signalpred->Add(signalpredro); |
422 |
< |
// puresignal->Add(signalpred,-1);//subtracting signal contamination |
423 |
< |
//--------------------- |
424 |
< |
// cout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl; |
425 |
< |
// TH1F *puresignal = allsamples.Draw("puresignal",mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4")); |
426 |
< |
vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile); |
427 |
< |
if(results.size()==0) { |
428 |
< |
delete puresignal; |
369 |
< |
continue; |
370 |
< |
} |
371 |
< |
exclusionmap->Fill(m23,m0,results[0]); |
372 |
< |
exclusionmap1s->Fill(m23,m0,results[1]); |
373 |
< |
exclusionmap2s->Fill(m23,m0,results[2]); |
374 |
< |
exclusionmap3s->Fill(m23,m0,results[3]); |
375 |
< |
delete puresignal; |
376 |
< |
cout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl; |
377 |
< |
} |
378 |
< |
}//end of model scan for loop |
379 |
< |
|
380 |
< |
cout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl; |
381 |
< |
c3->cd(); |
382 |
< |
exclusionmap->Draw("CONTZ"); |
383 |
< |
CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values"); |
384 |
< |
exclusionmap->Draw("COLZ"); |
385 |
< |
CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values"); |
386 |
< |
|
387 |
< |
exclusionmap1s->Draw("CONTZ"); |
388 |
< |
CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values"); |
389 |
< |
exclusionmap1s->Draw("COLZ"); |
390 |
< |
CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values"); |
391 |
< |
|
392 |
< |
exclusionmap2s->Draw("CONTZ"); |
393 |
< |
CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values"); |
394 |
< |
exclusionmap2s->Draw("COLZ"); |
395 |
< |
CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values"); |
396 |
< |
|
397 |
< |
exclusionmap3s->Draw("CONTZ"); |
398 |
< |
CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values"); |
399 |
< |
exclusionmap3s->Draw("COLZ"); |
400 |
< |
CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values"); |
401 |
< |
|
402 |
< |
TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE"); |
403 |
< |
exclusionmap->Write(); |
404 |
< |
exclusionmap1s->Write(); |
405 |
< |
exclusionmap2s->Write(); |
406 |
< |
exclusionmap3s->Write(); |
407 |
< |
exclusion_limits->Close(); |
408 |
< |
susyscanfile->Close(); |
357 |
> |
|
358 |
> |
/********************************************************************** new : Limits using SHAPES *********************************** |
359 |
> |
|
360 |
> |
|
361 |
> |
SSSSSSSSSSSSSSS hhhhhhh |
362 |
> |
SS:::::::::::::::Sh:::::h |
363 |
> |
S:::::SSSSSS::::::Sh:::::h |
364 |
> |
S:::::S SSSSSSSh:::::h |
365 |
> |
S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss |
366 |
> |
S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s |
367 |
> |
S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s |
368 |
> |
SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s |
369 |
> |
SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss |
370 |
> |
SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s |
371 |
> |
S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s |
372 |
> |
S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s |
373 |
> |
SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s |
374 |
> |
S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s |
375 |
> |
S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss |
376 |
> |
SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss |
377 |
> |
p:::::p |
378 |
> |
p:::::p |
379 |
> |
p:::::::p |
380 |
> |
p:::::::p |
381 |
> |
p:::::::p |
382 |
> |
ppppppppp |
383 |
> |
|
384 |
> |
|
385 |
> |
*********************************************************************** new : Limits using SHAPES ***********************************/ |
386 |
> |
|
387 |
> |
|
388 |
> |
void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) { |
389 |
> |
dout << "Creatig shape templates ... "; |
390 |
> |
if(identifier!="") dout << "for systematic called "<<identifier; |
391 |
> |
dout << endl; |
392 |
> |
int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!! |
393 |
> |
if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!"); |
394 |
> |
|
395 |
> |
TCut limitnJetcut; |
396 |
> |
if(JES==noJES) limitnJetcut=cutnJets; |
397 |
> |
else { |
398 |
> |
if(JES==JESdown) limitnJetcut=cutnJetsJESdown; |
399 |
> |
if(JES==JESup) limitnJetcut=cutnJetsJESup; |
400 |
> |
} |
401 |
> |
TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity); |
402 |
> |
TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity); |
403 |
> |
TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity); |
404 |
> |
TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity); |
405 |
> |
|
406 |
> |
TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity); |
407 |
> |
TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity); |
408 |
> |
TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity); |
409 |
> |
TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity); |
410 |
> |
|
411 |
> |
TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4")); |
412 |
> |
TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4")); |
413 |
> |
TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4")); |
414 |
> |
TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4")); |
415 |
> |
|
416 |
> |
TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4")); |
417 |
> |
TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4")); |
418 |
> |
TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4")); |
419 |
> |
TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4")); |
420 |
> |
|
421 |
> |
string obsname="data_obs"; |
422 |
> |
string predname="background"; |
423 |
> |
string signalname="signal"; |
424 |
> |
if(identifier!="") { |
425 |
> |
obsname=("data_"+identifier); |
426 |
> |
predname=("background_"+identifier); |
427 |
> |
signalname="signal_"+identifier; |
428 |
> |
} |
429 |
|
|
430 |
< |
myfile.close(); |
430 |
> |
TH1F *obs = (TH1F*)ZOSSFP->Clone(); |
431 |
> |
obs->SetName(obsname.c_str()); |
432 |
> |
obs->Write(); |
433 |
> |
TH1F *pred = (TH1F*)ZOSSFN->Clone(); |
434 |
> |
pred->Add(ZOSOFP,1.0/3); |
435 |
> |
pred->Add(ZOSOFN,-1.0/3); |
436 |
> |
pred->Add(SBOSSFP,1.0/3); |
437 |
> |
pred->Add(SBOSSFN,-1.0/3); |
438 |
> |
pred->Add(SBOSOFP,1.0/3); |
439 |
> |
pred->Add(SBOSOFN,-1.0/3); |
440 |
> |
pred->SetName(predname.c_str()); |
441 |
> |
pred->Write(); |
442 |
> |
|
443 |
> |
// TH1F *Lobs = (TH1F*)LZOSSFP->Clone(); |
444 |
> |
// TH1F *Lpred = (TH1F*)LZOSSFN->Clone(); |
445 |
> |
|
446 |
> |
TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]); |
447 |
> |
TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]); |
448 |
> |
Lobs->Add(LZOSSFP); |
449 |
> |
Lpred->Add(LZOSSFN); |
450 |
> |
Lpred->Add(LZOSOFP,1.0/3); |
451 |
> |
Lpred->Add(LZOSOFN,-1.0/3); |
452 |
> |
Lpred->Add(LSBOSSFP,1.0/3); |
453 |
> |
Lpred->Add(LSBOSSFN,-1.0/3); |
454 |
> |
Lpred->Add(LSBOSOFP,1.0/3); |
455 |
> |
Lpred->Add(LSBOSOFN,-1.0/3); |
456 |
> |
TH1F *signal = (TH1F*)Lobs->Clone(); |
457 |
> |
signal->Add(Lpred,-1); |
458 |
> |
signal->SetName(signalname.c_str()); |
459 |
> |
signal->Write(); |
460 |
> |
|
461 |
> |
delete Lobs; |
462 |
> |
delete Lpred; |
463 |
> |
|
464 |
> |
delete ZOSSFP; |
465 |
> |
delete ZOSOFP; |
466 |
> |
delete ZOSSFN; |
467 |
> |
delete ZOSOFN; |
468 |
> |
|
469 |
> |
delete SBOSSFP; |
470 |
> |
delete SBOSOFP; |
471 |
> |
delete SBOSSFN; |
472 |
> |
delete SBOSOFN; |
473 |
> |
|
474 |
> |
delete LZOSSFP; |
475 |
> |
delete LZOSOFP; |
476 |
> |
delete LZOSSFN; |
477 |
> |
delete LZOSOFN; |
478 |
> |
|
479 |
> |
delete LSBOSSFP; |
480 |
> |
delete LSBOSOFP; |
481 |
> |
delete LSBOSSFN; |
482 |
> |
delete LSBOSOFN; |
483 |
> |
|
484 |
|
} |
485 |
|
|
486 |
+ |
void prepare_datacard(TFile *f) { |
487 |
+ |
TH1F *dataob = (TH1F*)f->Get("data_obs"); |
488 |
+ |
TH1F *signal = (TH1F*)f->Get("signal"); |
489 |
+ |
TH1F *background = (TH1F*)f->Get("background"); |
490 |
+ |
|
491 |
+ |
ofstream datacard; |
492 |
+ |
ensure_directory_exists(get_directory()+"/limits"); |
493 |
+ |
datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str()); |
494 |
+ |
datacard << "Writing this to a file.\n"; |
495 |
+ |
datacard << "imax 1\n"; |
496 |
+ |
datacard << "jmax 1\n"; |
497 |
+ |
datacard << "kmax *\n"; |
498 |
+ |
datacard << "---------------\n"; |
499 |
+ |
datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n"; |
500 |
+ |
datacard << "---------------\n"; |
501 |
+ |
datacard << "bin 1\n"; |
502 |
+ |
datacard << "observation "<<dataob->Integral()<<"\n"; |
503 |
+ |
datacard << "------------------------------\n"; |
504 |
+ |
datacard << "bin 1 1\n"; |
505 |
+ |
datacard << "process signal background\n"; |
506 |
+ |
datacard << "process 0 1\n"; |
507 |
+ |
datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n"; |
508 |
+ |
datacard << "--------------------------------\n"; |
509 |
+ |
datacard << "lumi lnN 1.10 1.0\n"; |
510 |
+ |
datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n"; |
511 |
+ |
datacard << "JES shape 1 1 uncertainty on background shape and normalization\n"; |
512 |
+ |
datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n"; |
513 |
+ |
datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n"; |
514 |
+ |
datacard.close(); |
515 |
+ |
} |
516 |
|
|
517 |
|
|
518 |
< |
|
518 |
> |
void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) { |
519 |
> |
ensure_directory_exists(get_directory()+"/limits"); |
520 |
> |
TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE"); |
521 |
> |
TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits"); |
522 |
> |
limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan); |
523 |
> |
limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan); |
524 |
> |
limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan); |
525 |
> |
limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan); |
526 |
> |
limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan); |
527 |
> |
|
528 |
> |
prepare_datacard(limfile); |
529 |
> |
limfile->Close(); |
530 |
> |
write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!"); |
531 |
> |
|
532 |
> |
} |