15 |
|
#include <TF1.h> |
16 |
|
#include <TSQLResult.h> |
17 |
|
#include <TProfile.h> |
18 |
+ |
#include <TSystem.h> |
19 |
+ |
#include "LimitDroplet.C" |
20 |
|
|
21 |
|
//#include "TTbar_stuff.C" |
22 |
|
using namespace std; |
170 |
|
|
171 |
|
} |
172 |
|
|
173 |
< |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) { |
174 |
< |
float sigma95=0.0,sigma95A=0.0; |
175 |
< |
int nuisancemodel=1; |
176 |
< |
dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
177 |
< |
sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel); |
178 |
< |
if(doobserved) { |
179 |
< |
dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl; |
180 |
< |
sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel); |
181 |
< |
} |
173 |
> |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doexpected) { |
174 |
> |
float sigma95=-9.9,sigma95A=-9.9; |
175 |
> |
/* |
176 |
> |
USAGE OF ROOSTATS_CL95 |
177 |
> |
" Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n" |
178 |
> |
" LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n" |
179 |
> |
" Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n" |
180 |
> |
" \n" |
181 |
> |
" |
182 |
> |
" Double_t obs_limit = limit.GetObservedLimit(); \n" |
183 |
> |
" Double_t exp_limit = limit.GetExpectedLimit(); \n" |
184 |
> |
" Double_t exp_up = limit.GetOneSigmaHighRange(); \n" |
185 |
> |
" Double_t exp_down = limit.GetOneSigmaLowRange(); \n" |
186 |
> |
" Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n" |
187 |
> |
" Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n" |
188 |
> |
*/ |
189 |
> |
if(mceff<=0) { |
190 |
> |
write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:"); |
191 |
> |
dout << "mc efficiency=" << mceff << " +/- " << mcefferr; |
192 |
> |
vector<float> sigmas; |
193 |
> |
sigmas.push_back(-1); |
194 |
> |
sigmas.push_back(-1); |
195 |
> |
return sigmas; |
196 |
> |
} else { |
197 |
> |
int nlimittoysused=1; |
198 |
> |
|
199 |
> |
///------------------------------------------ < NEW > ---------------------------------------------------------- |
200 |
> |
|
201 |
> |
int secondssince1970=time(NULL); |
202 |
> |
stringstream repname; |
203 |
> |
repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt"; |
204 |
> |
|
205 |
> |
/* - report filename [1] |
206 |
> |
- luminosity [2] |
207 |
> |
- lumi uncert [3] |
208 |
> |
- MC efficiency [4] |
209 |
> |
- MC efficiency error [5] |
210 |
> |
- Npred [6] |
211 |
> |
- Nprederr [7] |
212 |
> |
- Nobs [8] |
213 |
> |
- JZB cut [9] |
214 |
> |
- plot name [10]*/ |
215 |
> |
|
216 |
> |
dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
217 |
> |
|
218 |
> |
stringstream command; |
219 |
> |
command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/NewLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected; |
220 |
> |
dout << command.str() << endl; |
221 |
> |
|
222 |
> |
int retval = 256; |
223 |
> |
int attempts=0; |
224 |
> |
while(!(retval==0||attempts>=5)) {//try up to 5 times |
225 |
> |
attempts++; |
226 |
> |
dout << "Starting limit calculation (LimitCapsule) now : Attempt " << attempts << endl; |
227 |
> |
retval=gSystem->Exec(command.str().c_str()); |
228 |
> |
} |
229 |
> |
|
230 |
> |
LimitDroplet limres; |
231 |
> |
limres.readDroplet(repname.str()); |
232 |
> |
dout << limres << endl; |
233 |
> |
remove(repname.str().c_str()); |
234 |
> |
sigma95=limres.observed; |
235 |
> |
|
236 |
> |
|
237 |
> |
///------------------------------------------ < /NEW > ---------------------------------------------------------- |
238 |
|
vector<float> sigmas; |
239 |
|
sigmas.push_back(sigma95); |
240 |
< |
sigmas.push_back(sigma95A); |
240 |
> |
if(doexpected) { |
241 |
> |
sigmas.push_back(limres.expected); |
242 |
> |
sigmas.push_back(limres.upper68); |
243 |
> |
sigmas.push_back(limres.lower68); |
244 |
> |
sigmas.push_back(limres.upper95); |
245 |
> |
sigmas.push_back(limres.lower95); |
246 |
> |
} |
247 |
> |
|
248 |
|
return sigmas; |
249 |
+ |
|
250 |
+ |
|
251 |
+ |
}//end of mc efficiency is ok |
252 |
|
} |
253 |
|
|
254 |
< |
void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) { |
254 |
> |
void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doexpected) { |
255 |
|
dout << "Doing counting experiment ... " << endl; |
256 |
|
vector<vector<string> > limits; |
257 |
|
vector<vector<float> > vlimits; |
269 |
|
float staterr=uncertainties[isample*jzbcuts.size()+ibin][2]; |
270 |
|
float systerr=uncertainties[isample*jzbcuts.size()+ibin][3]; |
271 |
|
float toterr =uncertainties[isample*jzbcuts.size()+ibin][4]; |
272 |
< |
float observed,null,result; |
205 |
< |
fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples); |
206 |
< |
observed-=result;//this is the actual excess we see! |
207 |
< |
float expected=observed/luminosity; |
272 |
> |
float observed,observederr,null,result; |
273 |
|
|
274 |
+ |
// fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples); |
275 |
+ |
// observed-=result;//this is the actual excess we see! |
276 |
+ |
// float expected=observed/luminosity; |
277 |
+ |
string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png")); |
278 |
|
dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl; |
279 |
< |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved); |
279 |
> |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doexpected); |
280 |
|
|
281 |
< |
if(doobserved) { |
282 |
< |
rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")"); |
281 |
> |
if(doexpected) { |
282 |
> |
// rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")"); |
283 |
> |
rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")"); |
284 |
|
vrows.push_back(sigmas[0]); |
285 |
|
vrows.push_back(sigmas[1]); |
286 |
< |
vrows.push_back(expected); |
286 |
> |
// vrows.push_back(expected); |
287 |
> |
vrows.push_back(signalsamples.collection[isample].xs); |
288 |
|
} |
289 |
|
else { |
290 |
< |
rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")"); |
290 |
> |
// rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")"); |
291 |
> |
rows.push_back(any2string(sigmas[0])); |
292 |
|
vrows.push_back(sigmas[0]); |
293 |
< |
vrows.push_back(expected); |
293 |
> |
vrows.push_back(signalsamples.collection[isample].xs); |
294 |
> |
// vrows.push_back(expected); |
295 |
|
} |
296 |
|
}//end of bin loop |
297 |
|
limits.push_back(rows); |
298 |
|
vlimits.push_back(vrows); |
299 |
|
}//end of sample loop |
300 |
< |
dout << endl << endl << "PAS table 3: " << endl << endl; |
300 |
> |
dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl; |
301 |
> |
dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl; |
302 |
|
dout << "\t"; |
303 |
|
for (int irow=0;irow<jzbcuts.size();irow++) { |
304 |
|
dout << jzbcuts[irow] << "\t"; |
306 |
|
dout << endl; |
307 |
|
for(int irow=0;irow<limits.size();irow++) { |
308 |
|
for(int ientry=0;ientry<limits[irow].size();ientry++) { |
309 |
< |
dout << limits[irow][ientry] << "\t"; |
309 |
> |
if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t"; |
310 |
> |
else dout << " (N/A) \t"; |
311 |
|
} |
312 |
|
dout << endl; |
313 |
|
} |
314 |
|
|
315 |
< |
if(!doobserved) { |
316 |
< |
dout << endl << endl << "LIMITS: " << endl; |
317 |
< |
dout << "\t"; |
315 |
> |
if(!doexpected) { |
316 |
> |
dout << endl << endl << "LIMITS: (Tex)" << endl; |
317 |
> |
tout << "\\begin{table}[hbtp]" << endl; |
318 |
> |
tout << "\\renewcommand{\\arraystretch}{1.3}" << endl; |
319 |
> |
tout << "\\begin{center}" << endl; |
320 |
> |
tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl; |
321 |
> |
tout << "" << endl; |
322 |
> |
tout << "\\begin{tabular}{ | l | "; |
323 |
> |
for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |"; |
324 |
> |
tout << "} " << endl << " \\hline " << endl << "& \t "; |
325 |
|
for (int irow=0;irow<jzbcuts.size();irow++) { |
326 |
< |
dout << jzbcuts[irow] << "\t"; |
326 |
> |
tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t "; |
327 |
|
} |
328 |
< |
dout << endl; |
328 |
> |
tout << " \\\\ \\hline " << endl; |
329 |
|
for(int irow=0;irow<limits.size();irow++) { |
330 |
< |
dout << limits[irow][0] << "\t"; |
330 |
> |
tout << limits[irow][0] << " \t"; |
331 |
|
for(int ientry=0;ientry<jzbcuts.size();ientry++) { |
332 |
< |
dout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t"; |
332 |
> |
if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t"; |
333 |
> |
else tout << " & ( N / A ) \t"; |
334 |
> |
// dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t"; |
335 |
|
} |
336 |
< |
dout << endl; |
336 |
> |
tout << " \\\\ \\hline " << endl; |
337 |
|
} |
338 |
+ |
tout << "\\end{tabular}" << endl; |
339 |
+ |
tout << " \\end{tabular}"<< endl; |
340 |
+ |
tout << "\\end{center}"<< endl; |
341 |
+ |
tout << "\\end{table} "<< endl; |
342 |
+ |
|
343 |
|
}//do observed |
344 |
|
|
345 |
|
dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl; |
346 |
< |
dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t Prediction [pb]" << endl; |
346 |
> |
dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl; |
347 |
|
for(int icut=0;icut<jzbcuts.size();icut++) { |
348 |
< |
dout << "Region with JZB>" << jzbcuts[icut] << endl; |
348 |
> |
dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl; |
349 |
|
for(int isample=0;isample<signalsamples.collection.size();isample++) { |
350 |
< |
dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],1) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],1) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],1) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl; |
350 |
> |
dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl; |
351 |
|
} |
352 |
|
dout << endl; |
353 |
|
} |
265 |
– |
|
266 |
– |
write_warning("compute_upper_limits_from_counting_experiment","Still need to update the script"); |
354 |
|
} |
355 |
|
|
356 |
|
|
529 |
|
limfile->Close(); |
530 |
|
write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!"); |
531 |
|
|
532 |
< |
} |
532 |
> |
} |